| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 | 
							- <?php
 
- namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
 
- class LogarithmicBestFit extends BestFit
 
- {
 
-     /**
 
-      * Algorithm type to use for best-fit
 
-      * (Name of this Trend class).
 
-      *
 
-      * @var string
 
-      */
 
-     protected $bestFitType = 'logarithmic';
 
-     /**
 
-      * Return the Y-Value for a specified value of X.
 
-      *
 
-      * @param float $xValue X-Value
 
-      *
 
-      * @return float Y-Value
 
-      */
 
-     public function getValueOfYForX($xValue)
 
-     {
 
-         return $this->getIntersect() + $this->getSlope() * log($xValue - $this->xOffset);
 
-     }
 
-     /**
 
-      * Return the X-Value for a specified value of Y.
 
-      *
 
-      * @param float $yValue Y-Value
 
-      *
 
-      * @return float X-Value
 
-      */
 
-     public function getValueOfXForY($yValue)
 
-     {
 
-         return exp(($yValue - $this->getIntersect()) / $this->getSlope());
 
-     }
 
-     /**
 
-      * Return the Equation of the best-fit line.
 
-      *
 
-      * @param int $dp Number of places of decimal precision to display
 
-      *
 
-      * @return string
 
-      */
 
-     public function getEquation($dp = 0)
 
-     {
 
-         $slope = $this->getSlope($dp);
 
-         $intersect = $this->getIntersect($dp);
 
-         return 'Y = ' . $intersect . ' + ' . $slope . ' * log(X)';
 
-     }
 
-     /**
 
-      * Execute the regression and calculate the goodness of fit for a set of X and Y data values.
 
-      *
 
-      * @param float[] $yValues The set of Y-values for this regression
 
-      * @param float[] $xValues The set of X-values for this regression
 
-      * @param bool $const
 
-      */
 
-     private function logarithmicRegression($yValues, $xValues, $const)
 
-     {
 
-         foreach ($xValues as &$value) {
 
-             if ($value < 0.0) {
 
-                 $value = 0 - log(abs($value));
 
-             } elseif ($value > 0.0) {
 
-                 $value = log($value);
 
-             }
 
-         }
 
-         unset($value);
 
-         $this->leastSquareFit($yValues, $xValues, $const);
 
-     }
 
-     /**
 
-      * Define the regression and calculate the goodness of fit for a set of X and Y data values.
 
-      *
 
-      * @param float[] $yValues The set of Y-values for this regression
 
-      * @param float[] $xValues The set of X-values for this regression
 
-      * @param bool $const
 
-      */
 
-     public function __construct($yValues, $xValues = [], $const = true)
 
-     {
 
-         if (parent::__construct($yValues, $xValues) !== false) {
 
-             $this->logarithmicRegression($yValues, $xValues, $const);
 
-         }
 
-     }
 
- }
 
 
  |