| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 | <?phpnamespace PhpOffice\PhpSpreadsheet\Shared\JAMA;use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;/** *    For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n *    orthogonal matrix Q and an n-by-n upper triangular matrix R so that *    A = Q*R. * *    The QR decompostion always exists, even if the matrix does not have *    full rank, so the constructor will never fail.  The primary use of the *    QR decomposition is in the least squares solution of nonsquare systems *    of simultaneous linear equations.  This will fail if isFullRank() *    returns false. * *    @author  Paul Meagher * *    @version 1.1 */class QRDecomposition{    const MATRIX_RANK_EXCEPTION = 'Can only perform operation on full-rank matrix.';    /**     * Array for internal storage of decomposition.     *     * @var array     */    private $QR = [];    /**     * Row dimension.     *     * @var int     */    private $m;    /**     * Column dimension.     *     * @var int     */    private $n;    /**     * Array for internal storage of diagonal of R.     *     * @var array     */    private $Rdiag = [];    /**     * QR Decomposition computed by Householder reflections.     *     * @param matrix $A Rectangular matrix     */    public function __construct($A)    {        if ($A instanceof Matrix) {            // Initialize.            $this->QR = $A->getArrayCopy();            $this->m = $A->getRowDimension();            $this->n = $A->getColumnDimension();            // Main loop.            for ($k = 0; $k < $this->n; ++$k) {                // Compute 2-norm of k-th column without under/overflow.                $nrm = 0.0;                for ($i = $k; $i < $this->m; ++$i) {                    $nrm = hypo($nrm, $this->QR[$i][$k]);                }                if ($nrm != 0.0) {                    // Form k-th Householder vector.                    if ($this->QR[$k][$k] < 0) {                        $nrm = -$nrm;                    }                    for ($i = $k; $i < $this->m; ++$i) {                        $this->QR[$i][$k] /= $nrm;                    }                    $this->QR[$k][$k] += 1.0;                    // Apply transformation to remaining columns.                    for ($j = $k + 1; $j < $this->n; ++$j) {                        $s = 0.0;                        for ($i = $k; $i < $this->m; ++$i) {                            $s += $this->QR[$i][$k] * $this->QR[$i][$j];                        }                        $s = -$s / $this->QR[$k][$k];                        for ($i = $k; $i < $this->m; ++$i) {                            $this->QR[$i][$j] += $s * $this->QR[$i][$k];                        }                    }                }                $this->Rdiag[$k] = -$nrm;            }        } else {            throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION);        }    }    //    function __construct()    /**     *    Is the matrix full rank?     *     * @return bool true if R, and hence A, has full rank, else false     */    public function isFullRank()    {        for ($j = 0; $j < $this->n; ++$j) {            if ($this->Rdiag[$j] == 0) {                return false;            }        }        return true;    }    //    function isFullRank()    /**     * Return the Householder vectors.     *     * @return Matrix Lower trapezoidal matrix whose columns define the reflections     */    public function getH()    {        $H = [];        for ($i = 0; $i < $this->m; ++$i) {            for ($j = 0; $j < $this->n; ++$j) {                if ($i >= $j) {                    $H[$i][$j] = $this->QR[$i][$j];                } else {                    $H[$i][$j] = 0.0;                }            }        }        return new Matrix($H);    }    //    function getH()    /**     * Return the upper triangular factor.     *     * @return Matrix upper triangular factor     */    public function getR()    {        $R = [];        for ($i = 0; $i < $this->n; ++$i) {            for ($j = 0; $j < $this->n; ++$j) {                if ($i < $j) {                    $R[$i][$j] = $this->QR[$i][$j];                } elseif ($i == $j) {                    $R[$i][$j] = $this->Rdiag[$i];                } else {                    $R[$i][$j] = 0.0;                }            }        }        return new Matrix($R);    }    //    function getR()    /**     * Generate and return the (economy-sized) orthogonal factor.     *     * @return Matrix orthogonal factor     */    public function getQ()    {        $Q = [];        for ($k = $this->n - 1; $k >= 0; --$k) {            for ($i = 0; $i < $this->m; ++$i) {                $Q[$i][$k] = 0.0;            }            $Q[$k][$k] = 1.0;            for ($j = $k; $j < $this->n; ++$j) {                if ($this->QR[$k][$k] != 0) {                    $s = 0.0;                    for ($i = $k; $i < $this->m; ++$i) {                        $s += $this->QR[$i][$k] * $Q[$i][$j];                    }                    $s = -$s / $this->QR[$k][$k];                    for ($i = $k; $i < $this->m; ++$i) {                        $Q[$i][$j] += $s * $this->QR[$i][$k];                    }                }            }        }        return new Matrix($Q);    }    //    function getQ()    /**     * Least squares solution of A*X = B.     *     * @param Matrix $B a Matrix with as many rows as A and any number of columns     *     * @return Matrix matrix that minimizes the two norm of Q*R*X-B     */    public function solve($B)    {        if ($B->getRowDimension() == $this->m) {            if ($this->isFullRank()) {                // Copy right hand side                $nx = $B->getColumnDimension();                $X = $B->getArrayCopy();                // Compute Y = transpose(Q)*B                for ($k = 0; $k < $this->n; ++$k) {                    for ($j = 0; $j < $nx; ++$j) {                        $s = 0.0;                        for ($i = $k; $i < $this->m; ++$i) {                            $s += $this->QR[$i][$k] * $X[$i][$j];                        }                        $s = -$s / $this->QR[$k][$k];                        for ($i = $k; $i < $this->m; ++$i) {                            $X[$i][$j] += $s * $this->QR[$i][$k];                        }                    }                }                // Solve R*X = Y;                for ($k = $this->n - 1; $k >= 0; --$k) {                    for ($j = 0; $j < $nx; ++$j) {                        $X[$k][$j] /= $this->Rdiag[$k];                    }                    for ($i = 0; $i < $k; ++$i) {                        for ($j = 0; $j < $nx; ++$j) {                            $X[$i][$j] -= $X[$k][$j] * $this->QR[$i][$k];                        }                    }                }                $X = new Matrix($X);                return $X->getMatrix(0, $this->n - 1, 0, $nx);            }            throw new CalculationException(self::MATRIX_RANK_EXCEPTION);        }        throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);    }}
 |