| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861 | <?phpnamespace PhpOffice\PhpSpreadsheet\Shared\JAMA;/** *    Class to obtain eigenvalues and eigenvectors of a real matrix. * *    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D *    is diagonal and the eigenvector matrix V is orthogonal (i.e. *    A = V.times(D.times(V.transpose())) and V.times(V.transpose()) *    equals the identity matrix). * *    If A is not symmetric, then the eigenvalue matrix D is block diagonal *    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, *    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The *    columns of V represent the eigenvectors in the sense that A*V = V*D, *    i.e. A.times(V) equals V.times(D).  The matrix V may be badly *    conditioned, or even singular, so the validity of the equation *    A = V*D*inverse(V) depends upon V.cond(). * *    @author  Paul Meagher * *    @version 1.1 */class EigenvalueDecomposition{    /**     * Row and column dimension (square matrix).     *     * @var int     */    private $n;    /**     * Arrays for internal storage of eigenvalues.     *     * @var array     */    private $d = [];    private $e = [];    /**     * Array for internal storage of eigenvectors.     *     * @var array     */    private $V = [];    /**     * Array for internal storage of nonsymmetric Hessenberg form.     *     * @var array     */    private $H = [];    /**     * Working storage for nonsymmetric algorithm.     *     * @var array     */    private $ort;    /**     * Used for complex scalar division.     *     * @var float     */    private $cdivr;    private $cdivi;    /**     * Symmetric Householder reduction to tridiagonal form.     */    private function tred2()    {        //  This is derived from the Algol procedures tred2 by        //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for        //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding        //  Fortran subroutine in EISPACK.        $this->d = $this->V[$this->n - 1];        // Householder reduction to tridiagonal form.        for ($i = $this->n - 1; $i > 0; --$i) {            $i_ = $i - 1;            // Scale to avoid under/overflow.            $h = $scale = 0.0;            $scale += array_sum(array_map('abs', $this->d));            if ($scale == 0.0) {                $this->e[$i] = $this->d[$i_];                $this->d = array_slice($this->V[$i_], 0, $i_);                for ($j = 0; $j < $i; ++$j) {                    $this->V[$j][$i] = $this->V[$i][$j] = 0.0;                }            } else {                // Generate Householder vector.                for ($k = 0; $k < $i; ++$k) {                    $this->d[$k] /= $scale;                    $h += pow($this->d[$k], 2);                }                $f = $this->d[$i_];                $g = sqrt($h);                if ($f > 0) {                    $g = -$g;                }                $this->e[$i] = $scale * $g;                $h = $h - $f * $g;                $this->d[$i_] = $f - $g;                for ($j = 0; $j < $i; ++$j) {                    $this->e[$j] = 0.0;                }                // Apply similarity transformation to remaining columns.                for ($j = 0; $j < $i; ++$j) {                    $f = $this->d[$j];                    $this->V[$j][$i] = $f;                    $g = $this->e[$j] + $this->V[$j][$j] * $f;                    for ($k = $j + 1; $k <= $i_; ++$k) {                        $g += $this->V[$k][$j] * $this->d[$k];                        $this->e[$k] += $this->V[$k][$j] * $f;                    }                    $this->e[$j] = $g;                }                $f = 0.0;                for ($j = 0; $j < $i; ++$j) {                    $this->e[$j] /= $h;                    $f += $this->e[$j] * $this->d[$j];                }                $hh = $f / (2 * $h);                for ($j = 0; $j < $i; ++$j) {                    $this->e[$j] -= $hh * $this->d[$j];                }                for ($j = 0; $j < $i; ++$j) {                    $f = $this->d[$j];                    $g = $this->e[$j];                    for ($k = $j; $k <= $i_; ++$k) {                        $this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]);                    }                    $this->d[$j] = $this->V[$i - 1][$j];                    $this->V[$i][$j] = 0.0;                }            }            $this->d[$i] = $h;        }        // Accumulate transformations.        for ($i = 0; $i < $this->n - 1; ++$i) {            $this->V[$this->n - 1][$i] = $this->V[$i][$i];            $this->V[$i][$i] = 1.0;            $h = $this->d[$i + 1];            if ($h != 0.0) {                for ($k = 0; $k <= $i; ++$k) {                    $this->d[$k] = $this->V[$k][$i + 1] / $h;                }                for ($j = 0; $j <= $i; ++$j) {                    $g = 0.0;                    for ($k = 0; $k <= $i; ++$k) {                        $g += $this->V[$k][$i + 1] * $this->V[$k][$j];                    }                    for ($k = 0; $k <= $i; ++$k) {                        $this->V[$k][$j] -= $g * $this->d[$k];                    }                }            }            for ($k = 0; $k <= $i; ++$k) {                $this->V[$k][$i + 1] = 0.0;            }        }        $this->d = $this->V[$this->n - 1];        $this->V[$this->n - 1] = array_fill(0, $j, 0.0);        $this->V[$this->n - 1][$this->n - 1] = 1.0;        $this->e[0] = 0.0;    }    /**     * Symmetric tridiagonal QL algorithm.     *     *    This is derived from the Algol procedures tql2, by     *    Bowdler, Martin, Reinsch, and Wilkinson, Handbook for     *    Auto. Comp., Vol.ii-Linear Algebra, and the corresponding     * Fortran subroutine in EISPACK.     */    private function tql2()    {        for ($i = 1; $i < $this->n; ++$i) {            $this->e[$i - 1] = $this->e[$i];        }        $this->e[$this->n - 1] = 0.0;        $f = 0.0;        $tst1 = 0.0;        $eps = pow(2.0, -52.0);        for ($l = 0; $l < $this->n; ++$l) {            // Find small subdiagonal element            $tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l]));            $m = $l;            while ($m < $this->n) {                if (abs($this->e[$m]) <= $eps * $tst1) {                    break;                }                ++$m;            }            // If m == l, $this->d[l] is an eigenvalue,            // otherwise, iterate.            if ($m > $l) {                $iter = 0;                do {                    // Could check iteration count here.                    $iter += 1;                    // Compute implicit shift                    $g = $this->d[$l];                    $p = ($this->d[$l + 1] - $g) / (2.0 * $this->e[$l]);                    $r = hypo($p, 1.0);                    if ($p < 0) {                        $r *= -1;                    }                    $this->d[$l] = $this->e[$l] / ($p + $r);                    $this->d[$l + 1] = $this->e[$l] * ($p + $r);                    $dl1 = $this->d[$l + 1];                    $h = $g - $this->d[$l];                    for ($i = $l + 2; $i < $this->n; ++$i) {                        $this->d[$i] -= $h;                    }                    $f += $h;                    // Implicit QL transformation.                    $p = $this->d[$m];                    $c = 1.0;                    $c2 = $c3 = $c;                    $el1 = $this->e[$l + 1];                    $s = $s2 = 0.0;                    for ($i = $m - 1; $i >= $l; --$i) {                        $c3 = $c2;                        $c2 = $c;                        $s2 = $s;                        $g = $c * $this->e[$i];                        $h = $c * $p;                        $r = hypo($p, $this->e[$i]);                        $this->e[$i + 1] = $s * $r;                        $s = $this->e[$i] / $r;                        $c = $p / $r;                        $p = $c * $this->d[$i] - $s * $g;                        $this->d[$i + 1] = $h + $s * ($c * $g + $s * $this->d[$i]);                        // Accumulate transformation.                        for ($k = 0; $k < $this->n; ++$k) {                            $h = $this->V[$k][$i + 1];                            $this->V[$k][$i + 1] = $s * $this->V[$k][$i] + $c * $h;                            $this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;                        }                    }                    $p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1;                    $this->e[$l] = $s * $p;                    $this->d[$l] = $c * $p;                    // Check for convergence.                } while (abs($this->e[$l]) > $eps * $tst1);            }            $this->d[$l] = $this->d[$l] + $f;            $this->e[$l] = 0.0;        }        // Sort eigenvalues and corresponding vectors.        for ($i = 0; $i < $this->n - 1; ++$i) {            $k = $i;            $p = $this->d[$i];            for ($j = $i + 1; $j < $this->n; ++$j) {                if ($this->d[$j] < $p) {                    $k = $j;                    $p = $this->d[$j];                }            }            if ($k != $i) {                $this->d[$k] = $this->d[$i];                $this->d[$i] = $p;                for ($j = 0; $j < $this->n; ++$j) {                    $p = $this->V[$j][$i];                    $this->V[$j][$i] = $this->V[$j][$k];                    $this->V[$j][$k] = $p;                }            }        }    }    /**     * Nonsymmetric reduction to Hessenberg form.     *     *    This is derived from the Algol procedures orthes and ortran,     *    by Martin and Wilkinson, Handbook for Auto. Comp.,     *    Vol.ii-Linear Algebra, and the corresponding     * Fortran subroutines in EISPACK.     */    private function orthes()    {        $low = 0;        $high = $this->n - 1;        for ($m = $low + 1; $m <= $high - 1; ++$m) {            // Scale column.            $scale = 0.0;            for ($i = $m; $i <= $high; ++$i) {                $scale = $scale + abs($this->H[$i][$m - 1]);            }            if ($scale != 0.0) {                // Compute Householder transformation.                $h = 0.0;                for ($i = $high; $i >= $m; --$i) {                    $this->ort[$i] = $this->H[$i][$m - 1] / $scale;                    $h += $this->ort[$i] * $this->ort[$i];                }                $g = sqrt($h);                if ($this->ort[$m] > 0) {                    $g *= -1;                }                $h -= $this->ort[$m] * $g;                $this->ort[$m] -= $g;                // Apply Householder similarity transformation                // H = (I -u * u' / h) * H * (I -u * u') / h)                for ($j = $m; $j < $this->n; ++$j) {                    $f = 0.0;                    for ($i = $high; $i >= $m; --$i) {                        $f += $this->ort[$i] * $this->H[$i][$j];                    }                    $f /= $h;                    for ($i = $m; $i <= $high; ++$i) {                        $this->H[$i][$j] -= $f * $this->ort[$i];                    }                }                for ($i = 0; $i <= $high; ++$i) {                    $f = 0.0;                    for ($j = $high; $j >= $m; --$j) {                        $f += $this->ort[$j] * $this->H[$i][$j];                    }                    $f = $f / $h;                    for ($j = $m; $j <= $high; ++$j) {                        $this->H[$i][$j] -= $f * $this->ort[$j];                    }                }                $this->ort[$m] = $scale * $this->ort[$m];                $this->H[$m][$m - 1] = $scale * $g;            }        }        // Accumulate transformations (Algol's ortran).        for ($i = 0; $i < $this->n; ++$i) {            for ($j = 0; $j < $this->n; ++$j) {                $this->V[$i][$j] = ($i == $j ? 1.0 : 0.0);            }        }        for ($m = $high - 1; $m >= $low + 1; --$m) {            if ($this->H[$m][$m - 1] != 0.0) {                for ($i = $m + 1; $i <= $high; ++$i) {                    $this->ort[$i] = $this->H[$i][$m - 1];                }                for ($j = $m; $j <= $high; ++$j) {                    $g = 0.0;                    for ($i = $m; $i <= $high; ++$i) {                        $g += $this->ort[$i] * $this->V[$i][$j];                    }                    // Double division avoids possible underflow                    $g = ($g / $this->ort[$m]) / $this->H[$m][$m - 1];                    for ($i = $m; $i <= $high; ++$i) {                        $this->V[$i][$j] += $g * $this->ort[$i];                    }                }            }        }    }    /**     * Performs complex division.     *     * @param mixed $xr     * @param mixed $xi     * @param mixed $yr     * @param mixed $yi     */    private function cdiv($xr, $xi, $yr, $yi)    {        if (abs($yr) > abs($yi)) {            $r = $yi / $yr;            $d = $yr + $r * $yi;            $this->cdivr = ($xr + $r * $xi) / $d;            $this->cdivi = ($xi - $r * $xr) / $d;        } else {            $r = $yr / $yi;            $d = $yi + $r * $yr;            $this->cdivr = ($r * $xr + $xi) / $d;            $this->cdivi = ($r * $xi - $xr) / $d;        }    }    /**     * Nonsymmetric reduction from Hessenberg to real Schur form.     *     *    Code is derived from the Algol procedure hqr2,     *    by Martin and Wilkinson, Handbook for Auto. Comp.,     *    Vol.ii-Linear Algebra, and the corresponding     * Fortran subroutine in EISPACK.     */    private function hqr2()    {        //  Initialize        $nn = $this->n;        $n = $nn - 1;        $low = 0;        $high = $nn - 1;        $eps = pow(2.0, -52.0);        $exshift = 0.0;        $p = $q = $r = $s = $z = 0;        // Store roots isolated by balanc and compute matrix norm        $norm = 0.0;        for ($i = 0; $i < $nn; ++$i) {            if (($i < $low) or ($i > $high)) {                $this->d[$i] = $this->H[$i][$i];                $this->e[$i] = 0.0;            }            for ($j = max($i - 1, 0); $j < $nn; ++$j) {                $norm = $norm + abs($this->H[$i][$j]);            }        }        // Outer loop over eigenvalue index        $iter = 0;        while ($n >= $low) {            // Look for single small sub-diagonal element            $l = $n;            while ($l > $low) {                $s = abs($this->H[$l - 1][$l - 1]) + abs($this->H[$l][$l]);                if ($s == 0.0) {                    $s = $norm;                }                if (abs($this->H[$l][$l - 1]) < $eps * $s) {                    break;                }                --$l;            }            // Check for convergence            // One root found            if ($l == $n) {                $this->H[$n][$n] = $this->H[$n][$n] + $exshift;                $this->d[$n] = $this->H[$n][$n];                $this->e[$n] = 0.0;                --$n;                $iter = 0;            // Two roots found            } elseif ($l == $n - 1) {                $w = $this->H[$n][$n - 1] * $this->H[$n - 1][$n];                $p = ($this->H[$n - 1][$n - 1] - $this->H[$n][$n]) / 2.0;                $q = $p * $p + $w;                $z = sqrt(abs($q));                $this->H[$n][$n] = $this->H[$n][$n] + $exshift;                $this->H[$n - 1][$n - 1] = $this->H[$n - 1][$n - 1] + $exshift;                $x = $this->H[$n][$n];                // Real pair                if ($q >= 0) {                    if ($p >= 0) {                        $z = $p + $z;                    } else {                        $z = $p - $z;                    }                    $this->d[$n - 1] = $x + $z;                    $this->d[$n] = $this->d[$n - 1];                    if ($z != 0.0) {                        $this->d[$n] = $x - $w / $z;                    }                    $this->e[$n - 1] = 0.0;                    $this->e[$n] = 0.0;                    $x = $this->H[$n][$n - 1];                    $s = abs($x) + abs($z);                    $p = $x / $s;                    $q = $z / $s;                    $r = sqrt($p * $p + $q * $q);                    $p = $p / $r;                    $q = $q / $r;                    // Row modification                    for ($j = $n - 1; $j < $nn; ++$j) {                        $z = $this->H[$n - 1][$j];                        $this->H[$n - 1][$j] = $q * $z + $p * $this->H[$n][$j];                        $this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;                    }                    // Column modification                    for ($i = 0; $i <= $n; ++$i) {                        $z = $this->H[$i][$n - 1];                        $this->H[$i][$n - 1] = $q * $z + $p * $this->H[$i][$n];                        $this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;                    }                    // Accumulate transformations                    for ($i = $low; $i <= $high; ++$i) {                        $z = $this->V[$i][$n - 1];                        $this->V[$i][$n - 1] = $q * $z + $p * $this->V[$i][$n];                        $this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;                    }                    // Complex pair                } else {                    $this->d[$n - 1] = $x + $p;                    $this->d[$n] = $x + $p;                    $this->e[$n - 1] = $z;                    $this->e[$n] = -$z;                }                $n = $n - 2;                $iter = 0;            // No convergence yet            } else {                // Form shift                $x = $this->H[$n][$n];                $y = 0.0;                $w = 0.0;                if ($l < $n) {                    $y = $this->H[$n - 1][$n - 1];                    $w = $this->H[$n][$n - 1] * $this->H[$n - 1][$n];                }                // Wilkinson's original ad hoc shift                if ($iter == 10) {                    $exshift += $x;                    for ($i = $low; $i <= $n; ++$i) {                        $this->H[$i][$i] -= $x;                    }                    $s = abs($this->H[$n][$n - 1]) + abs($this->H[$n - 1][$n - 2]);                    $x = $y = 0.75 * $s;                    $w = -0.4375 * $s * $s;                }                // MATLAB's new ad hoc shift                if ($iter == 30) {                    $s = ($y - $x) / 2.0;                    $s = $s * $s + $w;                    if ($s > 0) {                        $s = sqrt($s);                        if ($y < $x) {                            $s = -$s;                        }                        $s = $x - $w / (($y - $x) / 2.0 + $s);                        for ($i = $low; $i <= $n; ++$i) {                            $this->H[$i][$i] -= $s;                        }                        $exshift += $s;                        $x = $y = $w = 0.964;                    }                }                // Could check iteration count here.                $iter = $iter + 1;                // Look for two consecutive small sub-diagonal elements                $m = $n - 2;                while ($m >= $l) {                    $z = $this->H[$m][$m];                    $r = $x - $z;                    $s = $y - $z;                    $p = ($r * $s - $w) / $this->H[$m + 1][$m] + $this->H[$m][$m + 1];                    $q = $this->H[$m + 1][$m + 1] - $z - $r - $s;                    $r = $this->H[$m + 2][$m + 1];                    $s = abs($p) + abs($q) + abs($r);                    $p = $p / $s;                    $q = $q / $s;                    $r = $r / $s;                    if ($m == $l) {                        break;                    }                    if (abs($this->H[$m][$m - 1]) * (abs($q) + abs($r)) <                        $eps * (abs($p) * (abs($this->H[$m - 1][$m - 1]) + abs($z) + abs($this->H[$m + 1][$m + 1])))) {                        break;                    }                    --$m;                }                for ($i = $m + 2; $i <= $n; ++$i) {                    $this->H[$i][$i - 2] = 0.0;                    if ($i > $m + 2) {                        $this->H[$i][$i - 3] = 0.0;                    }                }                // Double QR step involving rows l:n and columns m:n                for ($k = $m; $k <= $n - 1; ++$k) {                    $notlast = ($k != $n - 1);                    if ($k != $m) {                        $p = $this->H[$k][$k - 1];                        $q = $this->H[$k + 1][$k - 1];                        $r = ($notlast ? $this->H[$k + 2][$k - 1] : 0.0);                        $x = abs($p) + abs($q) + abs($r);                        if ($x != 0.0) {                            $p = $p / $x;                            $q = $q / $x;                            $r = $r / $x;                        }                    }                    if ($x == 0.0) {                        break;                    }                    $s = sqrt($p * $p + $q * $q + $r * $r);                    if ($p < 0) {                        $s = -$s;                    }                    if ($s != 0) {                        if ($k != $m) {                            $this->H[$k][$k - 1] = -$s * $x;                        } elseif ($l != $m) {                            $this->H[$k][$k - 1] = -$this->H[$k][$k - 1];                        }                        $p = $p + $s;                        $x = $p / $s;                        $y = $q / $s;                        $z = $r / $s;                        $q = $q / $p;                        $r = $r / $p;                        // Row modification                        for ($j = $k; $j < $nn; ++$j) {                            $p = $this->H[$k][$j] + $q * $this->H[$k + 1][$j];                            if ($notlast) {                                $p = $p + $r * $this->H[$k + 2][$j];                                $this->H[$k + 2][$j] = $this->H[$k + 2][$j] - $p * $z;                            }                            $this->H[$k][$j] = $this->H[$k][$j] - $p * $x;                            $this->H[$k + 1][$j] = $this->H[$k + 1][$j] - $p * $y;                        }                        // Column modification                        $iMax = min($n, $k + 3);                        for ($i = 0; $i <= $iMax; ++$i) {                            $p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k + 1];                            if ($notlast) {                                $p = $p + $z * $this->H[$i][$k + 2];                                $this->H[$i][$k + 2] = $this->H[$i][$k + 2] - $p * $r;                            }                            $this->H[$i][$k] = $this->H[$i][$k] - $p;                            $this->H[$i][$k + 1] = $this->H[$i][$k + 1] - $p * $q;                        }                        // Accumulate transformations                        for ($i = $low; $i <= $high; ++$i) {                            $p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k + 1];                            if ($notlast) {                                $p = $p + $z * $this->V[$i][$k + 2];                                $this->V[$i][$k + 2] = $this->V[$i][$k + 2] - $p * $r;                            }                            $this->V[$i][$k] = $this->V[$i][$k] - $p;                            $this->V[$i][$k + 1] = $this->V[$i][$k + 1] - $p * $q;                        }                    }  // ($s != 0)                }  // k loop            }  // check convergence        }  // while ($n >= $low)        // Backsubstitute to find vectors of upper triangular form        if ($norm == 0.0) {            return;        }        for ($n = $nn - 1; $n >= 0; --$n) {            $p = $this->d[$n];            $q = $this->e[$n];            // Real vector            if ($q == 0) {                $l = $n;                $this->H[$n][$n] = 1.0;                for ($i = $n - 1; $i >= 0; --$i) {                    $w = $this->H[$i][$i] - $p;                    $r = 0.0;                    for ($j = $l; $j <= $n; ++$j) {                        $r = $r + $this->H[$i][$j] * $this->H[$j][$n];                    }                    if ($this->e[$i] < 0.0) {                        $z = $w;                        $s = $r;                    } else {                        $l = $i;                        if ($this->e[$i] == 0.0) {                            if ($w != 0.0) {                                $this->H[$i][$n] = -$r / $w;                            } else {                                $this->H[$i][$n] = -$r / ($eps * $norm);                            }                            // Solve real equations                        } else {                            $x = $this->H[$i][$i + 1];                            $y = $this->H[$i + 1][$i];                            $q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i];                            $t = ($x * $s - $z * $r) / $q;                            $this->H[$i][$n] = $t;                            if (abs($x) > abs($z)) {                                $this->H[$i + 1][$n] = (-$r - $w * $t) / $x;                            } else {                                $this->H[$i + 1][$n] = (-$s - $y * $t) / $z;                            }                        }                        // Overflow control                        $t = abs($this->H[$i][$n]);                        if (($eps * $t) * $t > 1) {                            for ($j = $i; $j <= $n; ++$j) {                                $this->H[$j][$n] = $this->H[$j][$n] / $t;                            }                        }                    }                }                // Complex vector            } elseif ($q < 0) {                $l = $n - 1;                // Last vector component imaginary so matrix is triangular                if (abs($this->H[$n][$n - 1]) > abs($this->H[$n - 1][$n])) {                    $this->H[$n - 1][$n - 1] = $q / $this->H[$n][$n - 1];                    $this->H[$n - 1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n - 1];                } else {                    $this->cdiv(0.0, -$this->H[$n - 1][$n], $this->H[$n - 1][$n - 1] - $p, $q);                    $this->H[$n - 1][$n - 1] = $this->cdivr;                    $this->H[$n - 1][$n] = $this->cdivi;                }                $this->H[$n][$n - 1] = 0.0;                $this->H[$n][$n] = 1.0;                for ($i = $n - 2; $i >= 0; --$i) {                    // double ra,sa,vr,vi;                    $ra = 0.0;                    $sa = 0.0;                    for ($j = $l; $j <= $n; ++$j) {                        $ra = $ra + $this->H[$i][$j] * $this->H[$j][$n - 1];                        $sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];                    }                    $w = $this->H[$i][$i] - $p;                    if ($this->e[$i] < 0.0) {                        $z = $w;                        $r = $ra;                        $s = $sa;                    } else {                        $l = $i;                        if ($this->e[$i] == 0) {                            $this->cdiv(-$ra, -$sa, $w, $q);                            $this->H[$i][$n - 1] = $this->cdivr;                            $this->H[$i][$n] = $this->cdivi;                        } else {                            // Solve complex equations                            $x = $this->H[$i][$i + 1];                            $y = $this->H[$i + 1][$i];                            $vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q;                            $vi = ($this->d[$i] - $p) * 2.0 * $q;                            if ($vr == 0.0 & $vi == 0.0) {                                $vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z));                            }                            $this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);                            $this->H[$i][$n - 1] = $this->cdivr;                            $this->H[$i][$n] = $this->cdivi;                            if (abs($x) > (abs($z) + abs($q))) {                                $this->H[$i + 1][$n - 1] = (-$ra - $w * $this->H[$i][$n - 1] + $q * $this->H[$i][$n]) / $x;                                $this->H[$i + 1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n - 1]) / $x;                            } else {                                $this->cdiv(-$r - $y * $this->H[$i][$n - 1], -$s - $y * $this->H[$i][$n], $z, $q);                                $this->H[$i + 1][$n - 1] = $this->cdivr;                                $this->H[$i + 1][$n] = $this->cdivi;                            }                        }                        // Overflow control                        $t = max(abs($this->H[$i][$n - 1]), abs($this->H[$i][$n]));                        if (($eps * $t) * $t > 1) {                            for ($j = $i; $j <= $n; ++$j) {                                $this->H[$j][$n - 1] = $this->H[$j][$n - 1] / $t;                                $this->H[$j][$n] = $this->H[$j][$n] / $t;                            }                        }                    } // end else                } // end for            } // end else for complex case        } // end for        // Vectors of isolated roots        for ($i = 0; $i < $nn; ++$i) {            if ($i < $low | $i > $high) {                for ($j = $i; $j < $nn; ++$j) {                    $this->V[$i][$j] = $this->H[$i][$j];                }            }        }        // Back transformation to get eigenvectors of original matrix        for ($j = $nn - 1; $j >= $low; --$j) {            for ($i = $low; $i <= $high; ++$i) {                $z = 0.0;                $kMax = min($j, $high);                for ($k = $low; $k <= $kMax; ++$k) {                    $z = $z + $this->V[$i][$k] * $this->H[$k][$j];                }                $this->V[$i][$j] = $z;            }        }    }    // end hqr2    /**     * Constructor: Check for symmetry, then construct the eigenvalue decomposition.     *     * @param mixed $Arg A Square matrix     */    public function __construct($Arg)    {        $this->A = $Arg->getArray();        $this->n = $Arg->getColumnDimension();        $issymmetric = true;        for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) {            for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) {                $issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]);            }        }        if ($issymmetric) {            $this->V = $this->A;            // Tridiagonalize.            $this->tred2();            // Diagonalize.            $this->tql2();        } else {            $this->H = $this->A;            $this->ort = [];            // Reduce to Hessenberg form.            $this->orthes();            // Reduce Hessenberg to real Schur form.            $this->hqr2();        }    }    /**     * Return the eigenvector matrix.     *     * @return Matrix V     */    public function getV()    {        return new Matrix($this->V, $this->n, $this->n);    }    /**     * Return the real parts of the eigenvalues.     *     * @return array real(diag(D))     */    public function getRealEigenvalues()    {        return $this->d;    }    /**     * Return the imaginary parts of the eigenvalues.     *     * @return array imag(diag(D))     */    public function getImagEigenvalues()    {        return $this->e;    }    /**     * Return the block diagonal eigenvalue matrix.     *     * @return Matrix D     */    public function getD()    {        for ($i = 0; $i < $this->n; ++$i) {            $D[$i] = array_fill(0, $this->n, 0.0);            $D[$i][$i] = $this->d[$i];            if ($this->e[$i] == 0) {                continue;            }            $o = ($this->e[$i] > 0) ? $i + 1 : $i - 1;            $D[$i][$o] = $this->e[$i];        }        return new Matrix($D);    }}
 |