| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621 | <?phpnamespace PhpOffice\PhpSpreadsheet\Calculation;use PhpOffice\PhpSpreadsheet\Shared\Trend\Trend;class Statistical{    const LOG_GAMMA_X_MAX_VALUE = 2.55e305;    const XMININ = 2.23e-308;    const EPS = 2.22e-16;    const MAX_VALUE = 1.2e308;    const MAX_ITERATIONS = 256;    const SQRT2PI = 2.5066282746310005024157652848110452530069867406099;    private static function checkTrendArrays(&$array1, &$array2)    {        if (!is_array($array1)) {            $array1 = [$array1];        }        if (!is_array($array2)) {            $array2 = [$array2];        }        $array1 = Functions::flattenArray($array1);        $array2 = Functions::flattenArray($array2);        foreach ($array1 as $key => $value) {            if ((is_bool($value)) || (is_string($value)) || ($value === null)) {                unset($array1[$key], $array2[$key]);            }        }        foreach ($array2 as $key => $value) {            if ((is_bool($value)) || (is_string($value)) || ($value === null)) {                unset($array1[$key], $array2[$key]);            }        }        $array1 = array_merge($array1);        $array2 = array_merge($array2);        return true;    }    /**     * Incomplete beta function.     *     * @author Jaco van Kooten     * @author Paul Meagher     *     * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).     *     * @param mixed $x require 0<=x<=1     * @param mixed $p require p>0     * @param mixed $q require q>0     *     * @return float 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow     */    private static function incompleteBeta($x, $p, $q)    {        if ($x <= 0.0) {            return 0.0;        } elseif ($x >= 1.0) {            return 1.0;        } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) {            return 0.0;        }        $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));        if ($x < ($p + 1.0) / ($p + $q + 2.0)) {            return $beta_gam * self::betaFraction($x, $p, $q) / $p;        }        return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q);    }    // Function cache for logBeta function    private static $logBetaCacheP = 0.0;    private static $logBetaCacheQ = 0.0;    private static $logBetaCacheResult = 0.0;    /**     * The natural logarithm of the beta function.     *     * @param mixed $p require p>0     * @param mixed $q require q>0     *     * @return float 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow     *     * @author Jaco van Kooten     */    private static function logBeta($p, $q)    {        if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) {            self::$logBetaCacheP = $p;            self::$logBetaCacheQ = $q;            if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) {                self::$logBetaCacheResult = 0.0;            } else {                self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q);            }        }        return self::$logBetaCacheResult;    }    /**     * Evaluates of continued fraction part of incomplete beta function.     * Based on an idea from Numerical Recipes (W.H. Press et al, 1992).     *     * @author Jaco van Kooten     *     * @param mixed $x     * @param mixed $p     * @param mixed $q     *     * @return float     */    private static function betaFraction($x, $p, $q)    {        $c = 1.0;        $sum_pq = $p + $q;        $p_plus = $p + 1.0;        $p_minus = $p - 1.0;        $h = 1.0 - $sum_pq * $x / $p_plus;        if (abs($h) < self::XMININ) {            $h = self::XMININ;        }        $h = 1.0 / $h;        $frac = $h;        $m = 1;        $delta = 0.0;        while ($m <= self::MAX_ITERATIONS && abs($delta - 1.0) > Functions::PRECISION) {            $m2 = 2 * $m;            // even index for d            $d = $m * ($q - $m) * $x / (($p_minus + $m2) * ($p + $m2));            $h = 1.0 + $d * $h;            if (abs($h) < self::XMININ) {                $h = self::XMININ;            }            $h = 1.0 / $h;            $c = 1.0 + $d / $c;            if (abs($c) < self::XMININ) {                $c = self::XMININ;            }            $frac *= $h * $c;            // odd index for d            $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));            $h = 1.0 + $d * $h;            if (abs($h) < self::XMININ) {                $h = self::XMININ;            }            $h = 1.0 / $h;            $c = 1.0 + $d / $c;            if (abs($c) < self::XMININ) {                $c = self::XMININ;            }            $delta = $h * $c;            $frac *= $delta;            ++$m;        }        return $frac;    }    /**     * logGamma function.     *     * @version 1.1     *     * @author Jaco van Kooten     *     * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.     *     * The natural logarithm of the gamma function. <br />     * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />     * Applied Mathematics Division <br />     * Argonne National Laboratory <br />     * Argonne, IL 60439 <br />     * <p>     * References:     * <ol>     * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural     *     Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>     * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>     * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>     * </ol>     * </p>     * <p>     * From the original documentation:     * </p>     * <p>     * This routine calculates the LOG(GAMMA) function for a positive real argument X.     * Computation is based on an algorithm outlined in references 1 and 2.     * The program uses rational functions that theoretically approximate LOG(GAMMA)     * to at least 18 significant decimal digits. The approximation for X > 12 is from     * reference 3, while approximations for X < 12.0 are similar to those in reference     * 1, but are unpublished. The accuracy achieved depends on the arithmetic system,     * the compiler, the intrinsic functions, and proper selection of the     * machine-dependent constants.     * </p>     * <p>     * Error returns: <br />     * The program returns the value XINF for X .LE. 0.0 or when overflow would occur.     * The computation is believed to be free of underflow and overflow.     * </p>     *     * @return float MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305     */    // Function cache for logGamma    private static $logGammaCacheResult = 0.0;    private static $logGammaCacheX = 0.0;    private static function logGamma($x)    {        // Log Gamma related constants        static $lg_d1 = -0.5772156649015328605195174;        static $lg_d2 = 0.4227843350984671393993777;        static $lg_d4 = 1.791759469228055000094023;        static $lg_p1 = [            4.945235359296727046734888,            201.8112620856775083915565,            2290.838373831346393026739,            11319.67205903380828685045,            28557.24635671635335736389,            38484.96228443793359990269,            26377.48787624195437963534,            7225.813979700288197698961,        ];        static $lg_p2 = [            4.974607845568932035012064,            542.4138599891070494101986,            15506.93864978364947665077,            184793.2904445632425417223,            1088204.76946882876749847,            3338152.967987029735917223,            5106661.678927352456275255,            3074109.054850539556250927,        ];        static $lg_p4 = [            14745.02166059939948905062,            2426813.369486704502836312,            121475557.4045093227939592,            2663432449.630976949898078,            29403789566.34553899906876,            170266573776.5398868392998,            492612579337.743088758812,            560625185622.3951465078242,        ];        static $lg_q1 = [            67.48212550303777196073036,            1113.332393857199323513008,            7738.757056935398733233834,            27639.87074403340708898585,            54993.10206226157329794414,            61611.22180066002127833352,            36351.27591501940507276287,            8785.536302431013170870835,        ];        static $lg_q2 = [            183.0328399370592604055942,            7765.049321445005871323047,            133190.3827966074194402448,            1136705.821321969608938755,            5267964.117437946917577538,            13467014.54311101692290052,            17827365.30353274213975932,            9533095.591844353613395747,        ];        static $lg_q4 = [            2690.530175870899333379843,            639388.5654300092398984238,            41355999.30241388052042842,            1120872109.61614794137657,            14886137286.78813811542398,            101680358627.2438228077304,            341747634550.7377132798597,            446315818741.9713286462081,        ];        static $lg_c = [            -0.001910444077728,            8.4171387781295e-4,            -5.952379913043012e-4,            7.93650793500350248e-4,            -0.002777777777777681622553,            0.08333333333333333331554247,            0.0057083835261,        ];        // Rough estimate of the fourth root of logGamma_xBig        static $lg_frtbig = 2.25e76;        static $pnt68 = 0.6796875;        if ($x == self::$logGammaCacheX) {            return self::$logGammaCacheResult;        }        $y = $x;        if ($y > 0.0 && $y <= self::LOG_GAMMA_X_MAX_VALUE) {            if ($y <= self::EPS) {                $res = -log($y);            } elseif ($y <= 1.5) {                // ---------------------                //    EPS .LT. X .LE. 1.5                // ---------------------                if ($y < $pnt68) {                    $corr = -log($y);                    $xm1 = $y;                } else {                    $corr = 0.0;                    $xm1 = $y - 1.0;                }                if ($y <= 0.5 || $y >= $pnt68) {                    $xden = 1.0;                    $xnum = 0.0;                    for ($i = 0; $i < 8; ++$i) {                        $xnum = $xnum * $xm1 + $lg_p1[$i];                        $xden = $xden * $xm1 + $lg_q1[$i];                    }                    $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));                } else {                    $xm2 = $y - 1.0;                    $xden = 1.0;                    $xnum = 0.0;                    for ($i = 0; $i < 8; ++$i) {                        $xnum = $xnum * $xm2 + $lg_p2[$i];                        $xden = $xden * $xm2 + $lg_q2[$i];                    }                    $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));                }            } elseif ($y <= 4.0) {                // ---------------------                //    1.5 .LT. X .LE. 4.0                // ---------------------                $xm2 = $y - 2.0;                $xden = 1.0;                $xnum = 0.0;                for ($i = 0; $i < 8; ++$i) {                    $xnum = $xnum * $xm2 + $lg_p2[$i];                    $xden = $xden * $xm2 + $lg_q2[$i];                }                $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));            } elseif ($y <= 12.0) {                // ----------------------                //    4.0 .LT. X .LE. 12.0                // ----------------------                $xm4 = $y - 4.0;                $xden = -1.0;                $xnum = 0.0;                for ($i = 0; $i < 8; ++$i) {                    $xnum = $xnum * $xm4 + $lg_p4[$i];                    $xden = $xden * $xm4 + $lg_q4[$i];                }                $res = $lg_d4 + $xm4 * ($xnum / $xden);            } else {                // ---------------------------------                //    Evaluate for argument .GE. 12.0                // ---------------------------------                $res = 0.0;                if ($y <= $lg_frtbig) {                    $res = $lg_c[6];                    $ysq = $y * $y;                    for ($i = 0; $i < 6; ++$i) {                        $res = $res / $ysq + $lg_c[$i];                    }                    $res /= $y;                    $corr = log($y);                    $res = $res + log(self::SQRT2PI) - 0.5 * $corr;                    $res += $y * ($corr - 1.0);                }            }        } else {            // --------------------------            //    Return for bad arguments            // --------------------------            $res = self::MAX_VALUE;        }        // ------------------------------        //    Final adjustments and return        // ------------------------------        self::$logGammaCacheX = $x;        self::$logGammaCacheResult = $res;        return $res;    }    //    //    Private implementation of the incomplete Gamma function    //    private static function incompleteGamma($a, $x)    {        static $max = 32;        $summer = 0;        for ($n = 0; $n <= $max; ++$n) {            $divisor = $a;            for ($i = 1; $i <= $n; ++$i) {                $divisor *= ($a + $i);            }            $summer += (pow($x, $n) / $divisor);        }        return pow($x, $a) * exp(0 - $x) * $summer;    }    //    //    Private implementation of the Gamma function    //    private static function gamma($data)    {        if ($data == 0.0) {            return 0;        }        static $p0 = 1.000000000190015;        static $p = [            1 => 76.18009172947146,            2 => -86.50532032941677,            3 => 24.01409824083091,            4 => -1.231739572450155,            5 => 1.208650973866179e-3,            6 => -5.395239384953e-6,        ];        $y = $x = $data;        $tmp = $x + 5.5;        $tmp -= ($x + 0.5) * log($tmp);        $summer = $p0;        for ($j = 1; $j <= 6; ++$j) {            $summer += ($p[$j] / ++$y);        }        return exp(0 - $tmp + log(self::SQRT2PI * $summer / $x));    }    /*     *                                inverse_ncdf.php     *                            -------------------     *    begin                : Friday, January 16, 2004     *    copyright            : (C) 2004 Michael Nickerson     *    email                : nickersonm@yahoo.com     *     */    private static function inverseNcdf($p)    {        //    Inverse ncdf approximation by Peter J. Acklam, implementation adapted to        //    PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as        //    a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html        //    I have not checked the accuracy of this implementation. Be aware that PHP        //    will truncate the coeficcients to 14 digits.        //    You have permission to use and distribute this function freely for        //    whatever purpose you want, but please show common courtesy and give credit        //    where credit is due.        //    Input paramater is $p - probability - where 0 < p < 1.        //    Coefficients in rational approximations        static $a = [            1 => -3.969683028665376e+01,            2 => 2.209460984245205e+02,            3 => -2.759285104469687e+02,            4 => 1.383577518672690e+02,            5 => -3.066479806614716e+01,            6 => 2.506628277459239e+00,        ];        static $b = [            1 => -5.447609879822406e+01,            2 => 1.615858368580409e+02,            3 => -1.556989798598866e+02,            4 => 6.680131188771972e+01,            5 => -1.328068155288572e+01,        ];        static $c = [            1 => -7.784894002430293e-03,            2 => -3.223964580411365e-01,            3 => -2.400758277161838e+00,            4 => -2.549732539343734e+00,            5 => 4.374664141464968e+00,            6 => 2.938163982698783e+00,        ];        static $d = [            1 => 7.784695709041462e-03,            2 => 3.224671290700398e-01,            3 => 2.445134137142996e+00,            4 => 3.754408661907416e+00,        ];        //    Define lower and upper region break-points.        $p_low = 0.02425; //Use lower region approx. below this        $p_high = 1 - $p_low; //Use upper region approx. above this        if (0 < $p && $p < $p_low) {            //    Rational approximation for lower region.            $q = sqrt(-2 * log($p));            return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /                    (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);        } elseif ($p_low <= $p && $p <= $p_high) {            //    Rational approximation for central region.            $q = $p - 0.5;            $r = $q * $q;            return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /                   ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);        } elseif ($p_high < $p && $p < 1) {            //    Rational approximation for upper region.            $q = sqrt(-2 * log(1 - $p));            return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /                     (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);        }        //    If 0 < p < 1, return a null value        return Functions::NULL();    }    /**     * AVEDEV.     *     * Returns the average of the absolute deviations of data points from their mean.     * AVEDEV is a measure of the variability in a data set.     *     * Excel Function:     *        AVEDEV(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function AVEDEV(...$args)    {        $aArgs = Functions::flattenArrayIndexed($args);        // Return value        $returnValue = null;        $aMean = self::AVERAGE($aArgs);        if ($aMean != Functions::DIV0()) {            $aCount = 0;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {                    $arg = (int) $arg;                }                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    if ($returnValue === null) {                        $returnValue = abs($arg - $aMean);                    } else {                        $returnValue += abs($arg - $aMean);                    }                    ++$aCount;                }            }            // Return            if ($aCount == 0) {                return Functions::DIV0();            }            return $returnValue / $aCount;        }        return Functions::NAN();    }    /**     * AVERAGE.     *     * Returns the average (arithmetic mean) of the arguments     *     * Excel Function:     *        AVERAGE(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function AVERAGE(...$args)    {        $returnValue = $aCount = 0;        // Loop through arguments        foreach (Functions::flattenArrayIndexed($args) as $k => $arg) {            if ((is_bool($arg)) &&                ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {                $arg = (int) $arg;            }            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                if ($returnValue === null) {                    $returnValue = $arg;                } else {                    $returnValue += $arg;                }                ++$aCount;            }        }        // Return        if ($aCount > 0) {            return $returnValue / $aCount;        }        return Functions::DIV0();    }    /**     * AVERAGEA.     *     * Returns the average of its arguments, including numbers, text, and logical values     *     * Excel Function:     *        AVERAGEA(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function AVERAGEA(...$args)    {        $returnValue = null;        $aCount = 0;        // Loop through arguments        foreach (Functions::flattenArrayIndexed($args) as $k => $arg) {            if ((is_bool($arg)) &&                (!Functions::isMatrixValue($k))) {            } else {                if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {                    if (is_bool($arg)) {                        $arg = (int) $arg;                    } elseif (is_string($arg)) {                        $arg = 0;                    }                    if ($returnValue === null) {                        $returnValue = $arg;                    } else {                        $returnValue += $arg;                    }                    ++$aCount;                }            }        }        if ($aCount > 0) {            return $returnValue / $aCount;        }        return Functions::DIV0();    }    /**     * AVERAGEIF.     *     * Returns the average value from a range of cells that contain numbers within the list of arguments     *     * Excel Function:     *        AVERAGEIF(value1[,value2[, ...]],condition)     *     * @category Mathematical and Trigonometric Functions     *     * @param mixed $aArgs Data values     * @param string $condition the criteria that defines which cells will be checked     * @param mixed[] $averageArgs Data values     *     * @return float     */    public static function AVERAGEIF($aArgs, $condition, $averageArgs = [])    {        $returnValue = 0;        $aArgs = Functions::flattenArray($aArgs);        $averageArgs = Functions::flattenArray($averageArgs);        if (empty($averageArgs)) {            $averageArgs = $aArgs;        }        $condition = Functions::ifCondition($condition);        // Loop through arguments        $aCount = 0;        foreach ($aArgs as $key => $arg) {            if (!is_numeric($arg)) {                $arg = Calculation::wrapResult(strtoupper($arg));            }            $testCondition = '=' . $arg . $condition;            if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {                if (($returnValue === null) || ($arg > $returnValue)) {                    $returnValue += $arg;                    ++$aCount;                }            }        }        if ($aCount > 0) {            return $returnValue / $aCount;        }        return Functions::DIV0();    }    /**     * BETADIST.     *     * Returns the beta distribution.     *     * @param float $value Value at which you want to evaluate the distribution     * @param float $alpha Parameter to the distribution     * @param float $beta Parameter to the distribution     * @param mixed $rMin     * @param mixed $rMax     *     * @return float     */    public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1)    {        $value = Functions::flattenSingleValue($value);        $alpha = Functions::flattenSingleValue($alpha);        $beta = Functions::flattenSingleValue($beta);        $rMin = Functions::flattenSingleValue($rMin);        $rMax = Functions::flattenSingleValue($rMax);        if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {            if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {                return Functions::NAN();            }            if ($rMin > $rMax) {                $tmp = $rMin;                $rMin = $rMax;                $rMax = $tmp;            }            $value -= $rMin;            $value /= ($rMax - $rMin);            return self::incompleteBeta($value, $alpha, $beta);        }        return Functions::VALUE();    }    /**     * BETAINV.     *     * Returns the inverse of the beta distribution.     *     * @param float $probability Probability at which you want to evaluate the distribution     * @param float $alpha Parameter to the distribution     * @param float $beta Parameter to the distribution     * @param float $rMin Minimum value     * @param float $rMax Maximum value     *     * @return float     */    public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1)    {        $probability = Functions::flattenSingleValue($probability);        $alpha = Functions::flattenSingleValue($alpha);        $beta = Functions::flattenSingleValue($beta);        $rMin = Functions::flattenSingleValue($rMin);        $rMax = Functions::flattenSingleValue($rMax);        if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {            if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {                return Functions::NAN();            }            if ($rMin > $rMax) {                $tmp = $rMin;                $rMin = $rMax;                $rMax = $tmp;            }            $a = 0;            $b = 2;            $i = 0;            while ((($b - $a) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {                $guess = ($a + $b) / 2;                $result = self::BETADIST($guess, $alpha, $beta);                if (($result == $probability) || ($result == 0)) {                    $b = $a;                } elseif ($result > $probability) {                    $b = $guess;                } else {                    $a = $guess;                }            }            if ($i == self::MAX_ITERATIONS) {                return Functions::NA();            }            return round($rMin + $guess * ($rMax - $rMin), 12);        }        return Functions::VALUE();    }    /**     * BINOMDIST.     *     * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with     *        a fixed number of tests or trials, when the outcomes of any trial are only success or failure,     *        when trials are independent, and when the probability of success is constant throughout the     *        experiment. For example, BINOMDIST can calculate the probability that two of the next three     *        babies born are male.     *     * @param float $value Number of successes in trials     * @param float $trials Number of trials     * @param float $probability Probability of success on each trial     * @param bool $cumulative     *     * @return float     *     * @todo    Cumulative distribution function     */    public static function BINOMDIST($value, $trials, $probability, $cumulative)    {        $value = floor(Functions::flattenSingleValue($value));        $trials = floor(Functions::flattenSingleValue($trials));        $probability = Functions::flattenSingleValue($probability);        if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {            if (($value < 0) || ($value > $trials)) {                return Functions::NAN();            }            if (($probability < 0) || ($probability > 1)) {                return Functions::NAN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    $summer = 0;                    for ($i = 0; $i <= $value; ++$i) {                        $summer += MathTrig::COMBIN($trials, $i) * pow($probability, $i) * pow(1 - $probability, $trials - $i);                    }                    return $summer;                }                return MathTrig::COMBIN($trials, $value) * pow($probability, $value) * pow(1 - $probability, $trials - $value);            }        }        return Functions::VALUE();    }    /**     * CHIDIST.     *     * Returns the one-tailed probability of the chi-squared distribution.     *     * @param float $value Value for the function     * @param float $degrees degrees of freedom     *     * @return float     */    public static function CHIDIST($value, $degrees)    {        $value = Functions::flattenSingleValue($value);        $degrees = floor(Functions::flattenSingleValue($degrees));        if ((is_numeric($value)) && (is_numeric($degrees))) {            if ($degrees < 1) {                return Functions::NAN();            }            if ($value < 0) {                if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) {                    return 1;                }                return Functions::NAN();            }            return 1 - (self::incompleteGamma($degrees / 2, $value / 2) / self::gamma($degrees / 2));        }        return Functions::VALUE();    }    /**     * CHIINV.     *     * Returns the one-tailed probability of the chi-squared distribution.     *     * @param float $probability Probability for the function     * @param float $degrees degrees of freedom     *     * @return float     */    public static function CHIINV($probability, $degrees)    {        $probability = Functions::flattenSingleValue($probability);        $degrees = floor(Functions::flattenSingleValue($degrees));        if ((is_numeric($probability)) && (is_numeric($degrees))) {            $xLo = 100;            $xHi = 0;            $x = $xNew = 1;            $dx = 1;            $i = 0;            while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {                // Apply Newton-Raphson step                $result = self::CHIDIST($x, $degrees);                $error = $result - $probability;                if ($error == 0.0) {                    $dx = 0;                } elseif ($error < 0.0) {                    $xLo = $x;                } else {                    $xHi = $x;                }                // Avoid division by zero                if ($result != 0.0) {                    $dx = $error / $result;                    $xNew = $x - $dx;                }                // If the NR fails to converge (which for example may be the                // case if the initial guess is too rough) we apply a bisection                // step to determine a more narrow interval around the root.                if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {                    $xNew = ($xLo + $xHi) / 2;                    $dx = $xNew - $x;                }                $x = $xNew;            }            if ($i == self::MAX_ITERATIONS) {                return Functions::NA();            }            return round($x, 12);        }        return Functions::VALUE();    }    /**     * CONFIDENCE.     *     * Returns the confidence interval for a population mean     *     * @param float $alpha     * @param float $stdDev Standard Deviation     * @param float $size     *     * @return float     */    public static function CONFIDENCE($alpha, $stdDev, $size)    {        $alpha = Functions::flattenSingleValue($alpha);        $stdDev = Functions::flattenSingleValue($stdDev);        $size = floor(Functions::flattenSingleValue($size));        if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {            if (($alpha <= 0) || ($alpha >= 1)) {                return Functions::NAN();            }            if (($stdDev <= 0) || ($size < 1)) {                return Functions::NAN();            }            return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);        }        return Functions::VALUE();    }    /**     * CORREL.     *     * Returns covariance, the average of the products of deviations for each data point pair.     *     * @param mixed $yValues array of mixed Data Series Y     * @param null|mixed $xValues array of mixed Data Series X     *     * @return float     */    public static function CORREL($yValues, $xValues = null)    {        if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) {            return Functions::VALUE();        }        if (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return Functions::DIV0();        }        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getCorrelation();    }    /**     * COUNT.     *     * Counts the number of cells that contain numbers within the list of arguments     *     * Excel Function:     *        COUNT(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return int     */    public static function COUNT(...$args)    {        $returnValue = 0;        // Loop through arguments        $aArgs = Functions::flattenArrayIndexed($args);        foreach ($aArgs as $k => $arg) {            if ((is_bool($arg)) &&                ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {                $arg = (int) $arg;            }            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                ++$returnValue;            }        }        return $returnValue;    }    /**     * COUNTA.     *     * Counts the number of cells that are not empty within the list of arguments     *     * Excel Function:     *        COUNTA(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return int     */    public static function COUNTA(...$args)    {        $returnValue = 0;        // Loop through arguments        $aArgs = Functions::flattenArray($args);        foreach ($aArgs as $arg) {            // Is it a numeric, boolean or string value?            if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {                ++$returnValue;            }        }        return $returnValue;    }    /**     * COUNTBLANK.     *     * Counts the number of empty cells within the list of arguments     *     * Excel Function:     *        COUNTBLANK(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return int     */    public static function COUNTBLANK(...$args)    {        $returnValue = 0;        // Loop through arguments        $aArgs = Functions::flattenArray($args);        foreach ($aArgs as $arg) {            // Is it a blank cell?            if (($arg === null) || ((is_string($arg)) && ($arg == ''))) {                ++$returnValue;            }        }        return $returnValue;    }    /**     * COUNTIF.     *     * Counts the number of cells that contain numbers within the list of arguments     *     * Excel Function:     *        COUNTIF(value1[,value2[, ...]],condition)     *     * @category Statistical Functions     *     * @param mixed $aArgs Data values     * @param string $condition the criteria that defines which cells will be counted     *     * @return int     */    public static function COUNTIF($aArgs, $condition)    {        $returnValue = 0;        $aArgs = Functions::flattenArray($aArgs);        $condition = Functions::ifCondition($condition);        // Loop through arguments        foreach ($aArgs as $arg) {            if (!is_numeric($arg)) {                $arg = Calculation::wrapResult(strtoupper($arg));            }            $testCondition = '=' . $arg . $condition;            if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {                // Is it a value within our criteria                ++$returnValue;            }        }        return $returnValue;    }    /**     * COVAR.     *     * Returns covariance, the average of the products of deviations for each data point pair.     *     * @param mixed $yValues array of mixed Data Series Y     * @param mixed $xValues array of mixed Data Series X     *     * @return float     */    public static function COVAR($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return Functions::DIV0();        }        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getCovariance();    }    /**     * CRITBINOM.     *     * Returns the smallest value for which the cumulative binomial distribution is greater     *        than or equal to a criterion value     *     * See https://support.microsoft.com/en-us/help/828117/ for details of the algorithm used     *     * @param float $trials number of Bernoulli trials     * @param float $probability probability of a success on each trial     * @param float $alpha criterion value     *     * @return int     *     * @todo    Warning. This implementation differs from the algorithm detailed on the MS     *            web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess     *            This eliminates a potential endless loop error, but may have an adverse affect on the     *            accuracy of the function (although all my tests have so far returned correct results).     */    public static function CRITBINOM($trials, $probability, $alpha)    {        $trials = floor(Functions::flattenSingleValue($trials));        $probability = Functions::flattenSingleValue($probability);        $alpha = Functions::flattenSingleValue($alpha);        if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {            if ($trials < 0) {                return Functions::NAN();            } elseif (($probability < 0) || ($probability > 1)) {                return Functions::NAN();            } elseif (($alpha < 0) || ($alpha > 1)) {                return Functions::NAN();            } elseif ($alpha <= 0.5) {                $t = sqrt(log(1 / ($alpha * $alpha)));                $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));            } else {                $t = sqrt(log(1 / pow(1 - $alpha, 2)));                $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);            }            $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));            if ($Guess < 0) {                $Guess = 0;            } elseif ($Guess > $trials) {                $Guess = $trials;            }            $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;            $EssentiallyZero = 10e-12;            $m = floor($trials * $probability);            ++$TotalUnscaledProbability;            if ($m == $Guess) {                ++$UnscaledPGuess;            }            if ($m <= $Guess) {                ++$UnscaledCumPGuess;            }            $PreviousValue = 1;            $Done = false;            $k = $m + 1;            while ((!$Done) && ($k <= $trials)) {                $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));                $TotalUnscaledProbability += $CurrentValue;                if ($k == $Guess) {                    $UnscaledPGuess += $CurrentValue;                }                if ($k <= $Guess) {                    $UnscaledCumPGuess += $CurrentValue;                }                if ($CurrentValue <= $EssentiallyZero) {                    $Done = true;                }                $PreviousValue = $CurrentValue;                ++$k;            }            $PreviousValue = 1;            $Done = false;            $k = $m - 1;            while ((!$Done) && ($k >= 0)) {                $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);                $TotalUnscaledProbability += $CurrentValue;                if ($k == $Guess) {                    $UnscaledPGuess += $CurrentValue;                }                if ($k <= $Guess) {                    $UnscaledCumPGuess += $CurrentValue;                }                if ($CurrentValue <= $EssentiallyZero) {                    $Done = true;                }                $PreviousValue = $CurrentValue;                --$k;            }            $PGuess = $UnscaledPGuess / $TotalUnscaledProbability;            $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;            $CumPGuessMinus1 = $CumPGuess - 1;            while (true) {                if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {                    return $Guess;                } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {                    $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);                    $CumPGuessMinus1 = $CumPGuess;                    $CumPGuess = $CumPGuess + $PGuessPlus1;                    $PGuess = $PGuessPlus1;                    ++$Guess;                } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {                    $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;                    $CumPGuess = $CumPGuessMinus1;                    $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;                    $PGuess = $PGuessMinus1;                    --$Guess;                }            }        }        return Functions::VALUE();    }    /**     * DEVSQ.     *     * Returns the sum of squares of deviations of data points from their sample mean.     *     * Excel Function:     *        DEVSQ(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function DEVSQ(...$args)    {        $aArgs = Functions::flattenArrayIndexed($args);        // Return value        $returnValue = null;        $aMean = self::AVERAGE($aArgs);        if ($aMean != Functions::DIV0()) {            $aCount = -1;            foreach ($aArgs as $k => $arg) {                // Is it a numeric value?                if ((is_bool($arg)) &&                    ((!Functions::isCellValue($k)) ||                    (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {                    $arg = (int) $arg;                }                if ((is_numeric($arg)) && (!is_string($arg))) {                    if ($returnValue === null) {                        $returnValue = pow(($arg - $aMean), 2);                    } else {                        $returnValue += pow(($arg - $aMean), 2);                    }                    ++$aCount;                }            }            // Return            if ($returnValue === null) {                return Functions::NAN();            }            return $returnValue;        }        return self::NA();    }    /**     * EXPONDIST.     *     *    Returns the exponential distribution. Use EXPONDIST to model the time between events,     *        such as how long an automated bank teller takes to deliver cash. For example, you can     *        use EXPONDIST to determine the probability that the process takes at most 1 minute.     *     * @param float $value Value of the function     * @param float $lambda The parameter value     * @param bool $cumulative     *     * @return float     */    public static function EXPONDIST($value, $lambda, $cumulative)    {        $value = Functions::flattenSingleValue($value);        $lambda = Functions::flattenSingleValue($lambda);        $cumulative = Functions::flattenSingleValue($cumulative);        if ((is_numeric($value)) && (is_numeric($lambda))) {            if (($value < 0) || ($lambda < 0)) {                return Functions::NAN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    return 1 - exp(0 - $value * $lambda);                }                return $lambda * exp(0 - $value * $lambda);            }        }        return Functions::VALUE();    }    /**     * FISHER.     *     * Returns the Fisher transformation at x. This transformation produces a function that     *        is normally distributed rather than skewed. Use this function to perform hypothesis     *        testing on the correlation coefficient.     *     * @param float $value     *     * @return float     */    public static function FISHER($value)    {        $value = Functions::flattenSingleValue($value);        if (is_numeric($value)) {            if (($value <= -1) || ($value >= 1)) {                return Functions::NAN();            }            return 0.5 * log((1 + $value) / (1 - $value));        }        return Functions::VALUE();    }    /**     * FISHERINV.     *     * Returns the inverse of the Fisher transformation. Use this transformation when     *        analyzing correlations between ranges or arrays of data. If y = FISHER(x), then     *        FISHERINV(y) = x.     *     * @param float $value     *     * @return float     */    public static function FISHERINV($value)    {        $value = Functions::flattenSingleValue($value);        if (is_numeric($value)) {            return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);        }        return Functions::VALUE();    }    /**     * FORECAST.     *     * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.     *     * @param float $xValue Value of X for which we want to find Y     * @param mixed $yValues array of mixed Data Series Y     * @param mixed $xValues of mixed Data Series X     *     * @return float     */    public static function FORECAST($xValue, $yValues, $xValues)    {        $xValue = Functions::flattenSingleValue($xValue);        if (!is_numeric($xValue)) {            return Functions::VALUE();        } elseif (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return Functions::DIV0();        }        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getValueOfYForX($xValue);    }    /**     * GAMMADIST.     *     * Returns the gamma distribution.     *     * @param float $value Value at which you want to evaluate the distribution     * @param float $a Parameter to the distribution     * @param float $b Parameter to the distribution     * @param bool $cumulative     *     * @return float     */    public static function GAMMADIST($value, $a, $b, $cumulative)    {        $value = Functions::flattenSingleValue($value);        $a = Functions::flattenSingleValue($a);        $b = Functions::flattenSingleValue($b);        if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {            if (($value < 0) || ($a <= 0) || ($b <= 0)) {                return Functions::NAN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    return self::incompleteGamma($a, $value / $b) / self::gamma($a);                }                return (1 / (pow($b, $a) * self::gamma($a))) * pow($value, $a - 1) * exp(0 - ($value / $b));            }        }        return Functions::VALUE();    }    /**     * GAMMAINV.     *     * Returns the inverse of the beta distribution.     *     * @param float $probability Probability at which you want to evaluate the distribution     * @param float $alpha Parameter to the distribution     * @param float $beta Parameter to the distribution     *     * @return float     */    public static function GAMMAINV($probability, $alpha, $beta)    {        $probability = Functions::flattenSingleValue($probability);        $alpha = Functions::flattenSingleValue($alpha);        $beta = Functions::flattenSingleValue($beta);        if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {            if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {                return Functions::NAN();            }            $xLo = 0;            $xHi = $alpha * $beta * 5;            $x = $xNew = 1;            $error = $pdf = 0;            $dx = 1024;            $i = 0;            while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {                // Apply Newton-Raphson step                $error = self::GAMMADIST($x, $alpha, $beta, true) - $probability;                if ($error < 0.0) {                    $xLo = $x;                } else {                    $xHi = $x;                }                $pdf = self::GAMMADIST($x, $alpha, $beta, false);                // Avoid division by zero                if ($pdf != 0.0) {                    $dx = $error / $pdf;                    $xNew = $x - $dx;                }                // If the NR fails to converge (which for example may be the                // case if the initial guess is too rough) we apply a bisection                // step to determine a more narrow interval around the root.                if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {                    $xNew = ($xLo + $xHi) / 2;                    $dx = $xNew - $x;                }                $x = $xNew;            }            if ($i == self::MAX_ITERATIONS) {                return Functions::NA();            }            return $x;        }        return Functions::VALUE();    }    /**     * GAMMALN.     *     * Returns the natural logarithm of the gamma function.     *     * @param float $value     *     * @return float     */    public static function GAMMALN($value)    {        $value = Functions::flattenSingleValue($value);        if (is_numeric($value)) {            if ($value <= 0) {                return Functions::NAN();            }            return log(self::gamma($value));        }        return Functions::VALUE();    }    /**     * GEOMEAN.     *     * Returns the geometric mean of an array or range of positive data. For example, you     *        can use GEOMEAN to calculate average growth rate given compound interest with     *        variable rates.     *     * Excel Function:     *        GEOMEAN(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function GEOMEAN(...$args)    {        $aArgs = Functions::flattenArray($args);        $aMean = MathTrig::PRODUCT($aArgs);        if (is_numeric($aMean) && ($aMean > 0)) {            $aCount = self::COUNT($aArgs);            if (self::MIN($aArgs) > 0) {                return pow($aMean, (1 / $aCount));            }        }        return Functions::NAN();    }    /**     * GROWTH.     *     * Returns values along a predicted emponential Trend     *     * @param mixed[] $yValues Data Series Y     * @param mixed[] $xValues Data Series X     * @param mixed[] $newValues Values of X for which we want to find Y     * @param bool $const a logical value specifying whether to force the intersect to equal 0     *     * @return array of float     */    public static function GROWTH($yValues, $xValues = [], $newValues = [], $const = true)    {        $yValues = Functions::flattenArray($yValues);        $xValues = Functions::flattenArray($xValues);        $newValues = Functions::flattenArray($newValues);        $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);        $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);        if (empty($newValues)) {            $newValues = $bestFitExponential->getXValues();        }        $returnArray = [];        foreach ($newValues as $xValue) {            $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);        }        return $returnArray;    }    /**     * HARMEAN.     *     * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the     *        arithmetic mean of reciprocals.     *     * Excel Function:     *        HARMEAN(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function HARMEAN(...$args)    {        // Return value        $returnValue = Functions::NA();        // Loop through arguments        $aArgs = Functions::flattenArray($args);        if (self::MIN($aArgs) < 0) {            return Functions::NAN();        }        $aCount = 0;        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                if ($arg <= 0) {                    return Functions::NAN();                }                if ($returnValue === null) {                    $returnValue = (1 / $arg);                } else {                    $returnValue += (1 / $arg);                }                ++$aCount;            }        }        // Return        if ($aCount > 0) {            return 1 / ($returnValue / $aCount);        }        return $returnValue;    }    /**     * HYPGEOMDIST.     *     * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of     * sample successes, given the sample size, population successes, and population size.     *     * @param float $sampleSuccesses Number of successes in the sample     * @param float $sampleNumber Size of the sample     * @param float $populationSuccesses Number of successes in the population     * @param float $populationNumber Population size     *     * @return float     */    public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber)    {        $sampleSuccesses = floor(Functions::flattenSingleValue($sampleSuccesses));        $sampleNumber = floor(Functions::flattenSingleValue($sampleNumber));        $populationSuccesses = floor(Functions::flattenSingleValue($populationSuccesses));        $populationNumber = floor(Functions::flattenSingleValue($populationNumber));        if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {            if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {                return Functions::NAN();            }            if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {                return Functions::NAN();            }            if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {                return Functions::NAN();            }            return MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) *                   MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) /                   MathTrig::COMBIN($populationNumber, $sampleNumber);        }        return Functions::VALUE();    }    /**     * INTERCEPT.     *     * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.     *     * @param mixed[] $yValues Data Series Y     * @param mixed[] $xValues Data Series X     *     * @return float     */    public static function INTERCEPT($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return Functions::DIV0();        }        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getIntersect();    }    /**     * KURT.     *     * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness     * or flatness of a distribution compared with the normal distribution. Positive     * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a     * relatively flat distribution.     *     * @param array ...$args Data Series     *     * @return float     */    public static function KURT(...$args)    {        $aArgs = Functions::flattenArrayIndexed($args);        $mean = self::AVERAGE($aArgs);        $stdDev = self::STDEV($aArgs);        if ($stdDev > 0) {            $count = $summer = 0;            // Loop through arguments            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    (!Functions::isMatrixValue($k))) {                } else {                    // Is it a numeric value?                    if ((is_numeric($arg)) && (!is_string($arg))) {                        $summer += pow((($arg - $mean) / $stdDev), 4);                        ++$count;                    }                }            }            // Return            if ($count > 3) {                return $summer * ($count * ($count + 1) / (($count - 1) * ($count - 2) * ($count - 3))) - (3 * pow($count - 1, 2) / (($count - 2) * ($count - 3)));            }        }        return Functions::DIV0();    }    /**     * LARGE.     *     * Returns the nth largest value in a data set. You can use this function to     *        select a value based on its relative standing.     *     * Excel Function:     *        LARGE(value1[,value2[, ...]],entry)     *     * @category Statistical Functions     *     * @param mixed $args Data values     * @param int $entry Position (ordered from the largest) in the array or range of data to return     *     * @return float     */    public static function LARGE(...$args)    {        $aArgs = Functions::flattenArray($args);        // Calculate        $entry = floor(array_pop($aArgs));        if ((is_numeric($entry)) && (!is_string($entry))) {            $mArgs = [];            foreach ($aArgs as $arg) {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $mArgs[] = $arg;                }            }            $count = self::COUNT($mArgs);            $entry = floor(--$entry);            if (($entry < 0) || ($entry >= $count) || ($count == 0)) {                return Functions::NAN();            }            rsort($mArgs);            return $mArgs[$entry];        }        return Functions::VALUE();    }    /**     * LINEST.     *     * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,     *        and then returns an array that describes the line.     *     * @param mixed[] $yValues Data Series Y     * @param null|mixed[] $xValues Data Series X     * @param bool $const a logical value specifying whether to force the intersect to equal 0     * @param bool $stats a logical value specifying whether to return additional regression statistics     *     * @return array     */    public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)    {        $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);        $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);        if ($xValues === null) {            $xValues = range(1, count(Functions::flattenArray($yValues)));        }        if (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return 0;        }        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);        if ($stats) {            return [                [                    $bestFitLinear->getSlope(),                    $bestFitLinear->getSlopeSE(),                    $bestFitLinear->getGoodnessOfFit(),                    $bestFitLinear->getF(),                    $bestFitLinear->getSSRegression(),                ],                [                    $bestFitLinear->getIntersect(),                    $bestFitLinear->getIntersectSE(),                    $bestFitLinear->getStdevOfResiduals(),                    $bestFitLinear->getDFResiduals(),                    $bestFitLinear->getSSResiduals(),                ],            ];        }        return [                $bestFitLinear->getSlope(),                $bestFitLinear->getIntersect(),            ];    }    /**     * LOGEST.     *     * Calculates an exponential curve that best fits the X and Y data series,     *        and then returns an array that describes the line.     *     * @param mixed[] $yValues Data Series Y     * @param null|mixed[] $xValues Data Series X     * @param bool $const a logical value specifying whether to force the intersect to equal 0     * @param bool $stats a logical value specifying whether to return additional regression statistics     *     * @return array     */    public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)    {        $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);        $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);        if ($xValues === null) {            $xValues = range(1, count(Functions::flattenArray($yValues)));        }        if (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        foreach ($yValues as $value) {            if ($value <= 0.0) {                return Functions::NAN();            }        }        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return 1;        }        $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);        if ($stats) {            return [                [                    $bestFitExponential->getSlope(),                    $bestFitExponential->getSlopeSE(),                    $bestFitExponential->getGoodnessOfFit(),                    $bestFitExponential->getF(),                    $bestFitExponential->getSSRegression(),                ],                [                    $bestFitExponential->getIntersect(),                    $bestFitExponential->getIntersectSE(),                    $bestFitExponential->getStdevOfResiduals(),                    $bestFitExponential->getDFResiduals(),                    $bestFitExponential->getSSResiduals(),                ],            ];        }        return [                $bestFitExponential->getSlope(),                $bestFitExponential->getIntersect(),            ];    }    /**     * LOGINV.     *     * Returns the inverse of the normal cumulative distribution     *     * @param float $probability     * @param float $mean     * @param float $stdDev     *     * @return float     *     * @todo    Try implementing P J Acklam's refinement algorithm for greater     *            accuracy if I can get my head round the mathematics     *            (as described at) http://home.online.no/~pjacklam/notes/invnorm/     */    public static function LOGINV($probability, $mean, $stdDev)    {        $probability = Functions::flattenSingleValue($probability);        $mean = Functions::flattenSingleValue($mean);        $stdDev = Functions::flattenSingleValue($stdDev);        if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {                return Functions::NAN();            }            return exp($mean + $stdDev * self::NORMSINV($probability));        }        return Functions::VALUE();    }    /**     * LOGNORMDIST.     *     * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed     * with parameters mean and standard_dev.     *     * @param float $value     * @param float $mean     * @param float $stdDev     *     * @return float     */    public static function LOGNORMDIST($value, $mean, $stdDev)    {        $value = Functions::flattenSingleValue($value);        $mean = Functions::flattenSingleValue($mean);        $stdDev = Functions::flattenSingleValue($stdDev);        if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if (($value <= 0) || ($stdDev <= 0)) {                return Functions::NAN();            }            return self::NORMSDIST((log($value) - $mean) / $stdDev);        }        return Functions::VALUE();    }    /**     * MAX.     *     * MAX returns the value of the element of the values passed that has the highest value,     *        with negative numbers considered smaller than positive numbers.     *     * Excel Function:     *        MAX(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function MAX(...$args)    {        $returnValue = null;        // Loop through arguments        $aArgs = Functions::flattenArray($args);        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                if (($returnValue === null) || ($arg > $returnValue)) {                    $returnValue = $arg;                }            }        }        if ($returnValue === null) {            return 0;        }        return $returnValue;    }    /**     * MAXA.     *     * Returns the greatest value in a list of arguments, including numbers, text, and logical values     *     * Excel Function:     *        MAXA(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function MAXA(...$args)    {        $returnValue = null;        // Loop through arguments        $aArgs = Functions::flattenArray($args);        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {                if (is_bool($arg)) {                    $arg = (int) $arg;                } elseif (is_string($arg)) {                    $arg = 0;                }                if (($returnValue === null) || ($arg > $returnValue)) {                    $returnValue = $arg;                }            }        }        if ($returnValue === null) {            return 0;        }        return $returnValue;    }    /**     * MAXIF.     *     * Counts the maximum value within a range of cells that contain numbers within the list of arguments     *     * Excel Function:     *        MAXIF(value1[,value2[, ...]],condition)     *     * @category Mathematical and Trigonometric Functions     *     * @param mixed $aArgs Data values     * @param string $condition the criteria that defines which cells will be checked     * @param mixed $sumArgs     *     * @return float     */    public static function MAXIF($aArgs, $condition, $sumArgs = [])    {        $returnValue = null;        $aArgs = Functions::flattenArray($aArgs);        $sumArgs = Functions::flattenArray($sumArgs);        if (empty($sumArgs)) {            $sumArgs = $aArgs;        }        $condition = Functions::ifCondition($condition);        // Loop through arguments        foreach ($aArgs as $key => $arg) {            if (!is_numeric($arg)) {                $arg = Calculation::wrapResult(strtoupper($arg));            }            $testCondition = '=' . $arg . $condition;            if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {                if (($returnValue === null) || ($arg > $returnValue)) {                    $returnValue = $arg;                }            }        }        return $returnValue;    }    /**     * MEDIAN.     *     * Returns the median of the given numbers. The median is the number in the middle of a set of numbers.     *     * Excel Function:     *        MEDIAN(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function MEDIAN(...$args)    {        $returnValue = Functions::NAN();        $mArgs = [];        // Loop through arguments        $aArgs = Functions::flattenArray($args);        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                $mArgs[] = $arg;            }        }        $mValueCount = count($mArgs);        if ($mValueCount > 0) {            sort($mArgs, SORT_NUMERIC);            $mValueCount = $mValueCount / 2;            if ($mValueCount == floor($mValueCount)) {                $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;            } else {                $mValueCount = floor($mValueCount);                $returnValue = $mArgs[$mValueCount];            }        }        return $returnValue;    }    /**     * MIN.     *     * MIN returns the value of the element of the values passed that has the smallest value,     *        with negative numbers considered smaller than positive numbers.     *     * Excel Function:     *        MIN(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function MIN(...$args)    {        $returnValue = null;        // Loop through arguments        $aArgs = Functions::flattenArray($args);        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                if (($returnValue === null) || ($arg < $returnValue)) {                    $returnValue = $arg;                }            }        }        if ($returnValue === null) {            return 0;        }        return $returnValue;    }    /**     * MINA.     *     * Returns the smallest value in a list of arguments, including numbers, text, and logical values     *     * Excel Function:     *        MINA(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function MINA(...$args)    {        $returnValue = null;        // Loop through arguments        $aArgs = Functions::flattenArray($args);        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {                if (is_bool($arg)) {                    $arg = (int) $arg;                } elseif (is_string($arg)) {                    $arg = 0;                }                if (($returnValue === null) || ($arg < $returnValue)) {                    $returnValue = $arg;                }            }        }        if ($returnValue === null) {            return 0;        }        return $returnValue;    }    /**     * MINIF.     *     * Returns the minimum value within a range of cells that contain numbers within the list of arguments     *     * Excel Function:     *        MINIF(value1[,value2[, ...]],condition)     *     * @category Mathematical and Trigonometric Functions     *     * @param mixed $aArgs Data values     * @param string $condition the criteria that defines which cells will be checked     * @param mixed $sumArgs     *     * @return float     */    public static function MINIF($aArgs, $condition, $sumArgs = [])    {        $returnValue = null;        $aArgs = Functions::flattenArray($aArgs);        $sumArgs = Functions::flattenArray($sumArgs);        if (empty($sumArgs)) {            $sumArgs = $aArgs;        }        $condition = Functions::ifCondition($condition);        // Loop through arguments        foreach ($aArgs as $key => $arg) {            if (!is_numeric($arg)) {                $arg = Calculation::wrapResult(strtoupper($arg));            }            $testCondition = '=' . $arg . $condition;            if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {                if (($returnValue === null) || ($arg < $returnValue)) {                    $returnValue = $arg;                }            }        }        return $returnValue;    }    //    //    Special variant of array_count_values that isn't limited to strings and integers,    //        but can work with floating point numbers as values    //    private static function modeCalc($data)    {        $frequencyArray = [];        foreach ($data as $datum) {            $found = false;            foreach ($frequencyArray as $key => $value) {                if ((string) $value['value'] == (string) $datum) {                    ++$frequencyArray[$key]['frequency'];                    $found = true;                    break;                }            }            if (!$found) {                $frequencyArray[] = [                    'value' => $datum,                    'frequency' => 1,                ];            }        }        foreach ($frequencyArray as $key => $value) {            $frequencyList[$key] = $value['frequency'];            $valueList[$key] = $value['value'];        }        array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray);        if ($frequencyArray[0]['frequency'] == 1) {            return Functions::NA();        }        return $frequencyArray[0]['value'];    }    /**     * MODE.     *     * Returns the most frequently occurring, or repetitive, value in an array or range of data     *     * Excel Function:     *        MODE(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function MODE(...$args)    {        $returnValue = Functions::NA();        // Loop through arguments        $aArgs = Functions::flattenArray($args);        $mArgs = [];        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                $mArgs[] = $arg;            }        }        if (!empty($mArgs)) {            return self::modeCalc($mArgs);        }        return $returnValue;    }    /**     * NEGBINOMDIST.     *     * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that     *        there will be number_f failures before the number_s-th success, when the constant     *        probability of a success is probability_s. This function is similar to the binomial     *        distribution, except that the number of successes is fixed, and the number of trials is     *        variable. Like the binomial, trials are assumed to be independent.     *     * @param float $failures Number of Failures     * @param float $successes Threshold number of Successes     * @param float $probability Probability of success on each trial     *     * @return float     */    public static function NEGBINOMDIST($failures, $successes, $probability)    {        $failures = floor(Functions::flattenSingleValue($failures));        $successes = floor(Functions::flattenSingleValue($successes));        $probability = Functions::flattenSingleValue($probability);        if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {            if (($failures < 0) || ($successes < 1)) {                return Functions::NAN();            } elseif (($probability < 0) || ($probability > 1)) {                return Functions::NAN();            }            if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) {                if (($failures + $successes - 1) <= 0) {                    return Functions::NAN();                }            }            return (MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * (pow($probability, $successes)) * (pow(1 - $probability, $failures));        }        return Functions::VALUE();    }    /**     * NORMDIST.     *     * Returns the normal distribution for the specified mean and standard deviation. This     * function has a very wide range of applications in statistics, including hypothesis     * testing.     *     * @param float $value     * @param float $mean Mean Value     * @param float $stdDev Standard Deviation     * @param bool $cumulative     *     * @return float     */    public static function NORMDIST($value, $mean, $stdDev, $cumulative)    {        $value = Functions::flattenSingleValue($value);        $mean = Functions::flattenSingleValue($mean);        $stdDev = Functions::flattenSingleValue($stdDev);        if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if ($stdDev < 0) {                return Functions::NAN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    return 0.5 * (1 + Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2))));                }                return (1 / (self::SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean, 2) / (2 * ($stdDev * $stdDev))));            }        }        return Functions::VALUE();    }    /**     * NORMINV.     *     * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.     *     * @param float $probability     * @param float $mean Mean Value     * @param float $stdDev Standard Deviation     *     * @return float     */    public static function NORMINV($probability, $mean, $stdDev)    {        $probability = Functions::flattenSingleValue($probability);        $mean = Functions::flattenSingleValue($mean);        $stdDev = Functions::flattenSingleValue($stdDev);        if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if (($probability < 0) || ($probability > 1)) {                return Functions::NAN();            }            if ($stdDev < 0) {                return Functions::NAN();            }            return (self::inverseNcdf($probability) * $stdDev) + $mean;        }        return Functions::VALUE();    }    /**     * NORMSDIST.     *     * Returns the standard normal cumulative distribution function. The distribution has     * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a     * table of standard normal curve areas.     *     * @param float $value     *     * @return float     */    public static function NORMSDIST($value)    {        $value = Functions::flattenSingleValue($value);        return self::NORMDIST($value, 0, 1, true);    }    /**     * NORMSINV.     *     * Returns the inverse of the standard normal cumulative distribution     *     * @param float $value     *     * @return float     */    public static function NORMSINV($value)    {        return self::NORMINV($value, 0, 1);    }    /**     * PERCENTILE.     *     * Returns the nth percentile of values in a range..     *     * Excel Function:     *        PERCENTILE(value1[,value2[, ...]],entry)     *     * @category Statistical Functions     *     * @param mixed $args Data values     * @param float $entry Percentile value in the range 0..1, inclusive.     *     * @return float     */    public static function PERCENTILE(...$args)    {        $aArgs = Functions::flattenArray($args);        // Calculate        $entry = array_pop($aArgs);        if ((is_numeric($entry)) && (!is_string($entry))) {            if (($entry < 0) || ($entry > 1)) {                return Functions::NAN();            }            $mArgs = [];            foreach ($aArgs as $arg) {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $mArgs[] = $arg;                }            }            $mValueCount = count($mArgs);            if ($mValueCount > 0) {                sort($mArgs);                $count = self::COUNT($mArgs);                $index = $entry * ($count - 1);                $iBase = floor($index);                if ($index == $iBase) {                    return $mArgs[$index];                }                $iNext = $iBase + 1;                $iProportion = $index - $iBase;                return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion);            }        }        return Functions::VALUE();    }    /**     * PERCENTRANK.     *     * Returns the rank of a value in a data set as a percentage of the data set.     *     * @param float[] $valueSet An array of, or a reference to, a list of numbers     * @param int $value the number whose rank you want to find     * @param int $significance the number of significant digits for the returned percentage value     *     * @return float     */    public static function PERCENTRANK($valueSet, $value, $significance = 3)    {        $valueSet = Functions::flattenArray($valueSet);        $value = Functions::flattenSingleValue($value);        $significance = ($significance === null) ? 3 : (int) Functions::flattenSingleValue($significance);        foreach ($valueSet as $key => $valueEntry) {            if (!is_numeric($valueEntry)) {                unset($valueSet[$key]);            }        }        sort($valueSet, SORT_NUMERIC);        $valueCount = count($valueSet);        if ($valueCount == 0) {            return Functions::NAN();        }        $valueAdjustor = $valueCount - 1;        if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {            return Functions::NA();        }        $pos = array_search($value, $valueSet);        if ($pos === false) {            $pos = 0;            $testValue = $valueSet[0];            while ($testValue < $value) {                $testValue = $valueSet[++$pos];            }            --$pos;            $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));        }        return round($pos / $valueAdjustor, $significance);    }    /**     * PERMUT.     *     * Returns the number of permutations for a given number of objects that can be     *        selected from number objects. A permutation is any set or subset of objects or     *        events where internal order is significant. Permutations are different from     *        combinations, for which the internal order is not significant. Use this function     *        for lottery-style probability calculations.     *     * @param int $numObjs Number of different objects     * @param int $numInSet Number of objects in each permutation     *     * @return int Number of permutations     */    public static function PERMUT($numObjs, $numInSet)    {        $numObjs = Functions::flattenSingleValue($numObjs);        $numInSet = Functions::flattenSingleValue($numInSet);        if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {            $numInSet = floor($numInSet);            if ($numObjs < $numInSet) {                return Functions::NAN();            }            return round(MathTrig::FACT($numObjs) / MathTrig::FACT($numObjs - $numInSet));        }        return Functions::VALUE();    }    /**     * POISSON.     *     * Returns the Poisson distribution. A common application of the Poisson distribution     * is predicting the number of events over a specific time, such as the number of     * cars arriving at a toll plaza in 1 minute.     *     * @param float $value     * @param float $mean Mean Value     * @param bool $cumulative     *     * @return float     */    public static function POISSON($value, $mean, $cumulative)    {        $value = Functions::flattenSingleValue($value);        $mean = Functions::flattenSingleValue($mean);        if ((is_numeric($value)) && (is_numeric($mean))) {            if (($value < 0) || ($mean <= 0)) {                return Functions::NAN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    $summer = 0;                    $floor = floor($value);                    for ($i = 0; $i <= $floor; ++$i) {                        $summer += pow($mean, $i) / MathTrig::FACT($i);                    }                    return exp(0 - $mean) * $summer;                }                return (exp(0 - $mean) * pow($mean, $value)) / MathTrig::FACT($value);            }        }        return Functions::VALUE();    }    /**     * QUARTILE.     *     * Returns the quartile of a data set.     *     * Excel Function:     *        QUARTILE(value1[,value2[, ...]],entry)     *     * @category Statistical Functions     *     * @param mixed $args Data values     * @param int $entry Quartile value in the range 1..3, inclusive.     *     * @return float     */    public static function QUARTILE(...$args)    {        $aArgs = Functions::flattenArray($args);        // Calculate        $entry = floor(array_pop($aArgs));        if ((is_numeric($entry)) && (!is_string($entry))) {            $entry /= 4;            if (($entry < 0) || ($entry > 1)) {                return Functions::NAN();            }            return self::PERCENTILE($aArgs, $entry);        }        return Functions::VALUE();    }    /**     * RANK.     *     * Returns the rank of a number in a list of numbers.     *     * @param int $value the number whose rank you want to find     * @param float[] $valueSet An array of, or a reference to, a list of numbers     * @param int $order Order to sort the values in the value set     *     * @return float     */    public static function RANK($value, $valueSet, $order = 0)    {        $value = Functions::flattenSingleValue($value);        $valueSet = Functions::flattenArray($valueSet);        $order = ($order === null) ? 0 : (int) Functions::flattenSingleValue($order);        foreach ($valueSet as $key => $valueEntry) {            if (!is_numeric($valueEntry)) {                unset($valueSet[$key]);            }        }        if ($order == 0) {            rsort($valueSet, SORT_NUMERIC);        } else {            sort($valueSet, SORT_NUMERIC);        }        $pos = array_search($value, $valueSet);        if ($pos === false) {            return Functions::NA();        }        return ++$pos;    }    /**     * RSQ.     *     * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.     *     * @param mixed[] $yValues Data Series Y     * @param mixed[] $xValues Data Series X     *     * @return float     */    public static function RSQ($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return Functions::DIV0();        }        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getGoodnessOfFit();    }    /**     * SKEW.     *     * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry     * of a distribution around its mean. Positive skewness indicates a distribution with an     * asymmetric tail extending toward more positive values. Negative skewness indicates a     * distribution with an asymmetric tail extending toward more negative values.     *     * @param array ...$args Data Series     *     * @return float     */    public static function SKEW(...$args)    {        $aArgs = Functions::flattenArrayIndexed($args);        $mean = self::AVERAGE($aArgs);        $stdDev = self::STDEV($aArgs);        $count = $summer = 0;        // Loop through arguments        foreach ($aArgs as $k => $arg) {            if ((is_bool($arg)) &&                (!Functions::isMatrixValue($k))) {            } else {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $summer += pow((($arg - $mean) / $stdDev), 3);                    ++$count;                }            }        }        if ($count > 2) {            return $summer * ($count / (($count - 1) * ($count - 2)));        }        return Functions::DIV0();    }    /**     * SLOPE.     *     * Returns the slope of the linear regression line through data points in known_y's and known_x's.     *     * @param mixed[] $yValues Data Series Y     * @param mixed[] $xValues Data Series X     *     * @return float     */    public static function SLOPE($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return Functions::DIV0();        }        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getSlope();    }    /**     * SMALL.     *     * Returns the nth smallest value in a data set. You can use this function to     *        select a value based on its relative standing.     *     * Excel Function:     *        SMALL(value1[,value2[, ...]],entry)     *     * @category Statistical Functions     *     * @param mixed $args Data values     * @param int $entry Position (ordered from the smallest) in the array or range of data to return     *     * @return float     */    public static function SMALL(...$args)    {        $aArgs = Functions::flattenArray($args);        // Calculate        $entry = array_pop($aArgs);        if ((is_numeric($entry)) && (!is_string($entry))) {            $mArgs = [];            foreach ($aArgs as $arg) {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $mArgs[] = $arg;                }            }            $count = self::COUNT($mArgs);            $entry = floor(--$entry);            if (($entry < 0) || ($entry >= $count) || ($count == 0)) {                return Functions::NAN();            }            sort($mArgs);            return $mArgs[$entry];        }        return Functions::VALUE();    }    /**     * STANDARDIZE.     *     * Returns a normalized value from a distribution characterized by mean and standard_dev.     *     * @param float $value Value to normalize     * @param float $mean Mean Value     * @param float $stdDev Standard Deviation     *     * @return float Standardized value     */    public static function STANDARDIZE($value, $mean, $stdDev)    {        $value = Functions::flattenSingleValue($value);        $mean = Functions::flattenSingleValue($mean);        $stdDev = Functions::flattenSingleValue($stdDev);        if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if ($stdDev <= 0) {                return Functions::NAN();            }            return ($value - $mean) / $stdDev;        }        return Functions::VALUE();    }    /**     * STDEV.     *     * Estimates standard deviation based on a sample. The standard deviation is a measure of how     *        widely values are dispersed from the average value (the mean).     *     * Excel Function:     *        STDEV(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function STDEV(...$args)    {        $aArgs = Functions::flattenArrayIndexed($args);        // Return value        $returnValue = null;        $aMean = self::AVERAGE($aArgs);        if ($aMean !== null) {            $aCount = -1;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {                    $arg = (int) $arg;                }                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    if ($returnValue === null) {                        $returnValue = pow(($arg - $aMean), 2);                    } else {                        $returnValue += pow(($arg - $aMean), 2);                    }                    ++$aCount;                }            }            // Return            if (($aCount > 0) && ($returnValue >= 0)) {                return sqrt($returnValue / $aCount);            }        }        return Functions::DIV0();    }    /**     * STDEVA.     *     * Estimates standard deviation based on a sample, including numbers, text, and logical values     *     * Excel Function:     *        STDEVA(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function STDEVA(...$args)    {        $aArgs = Functions::flattenArrayIndexed($args);        $returnValue = null;        $aMean = self::AVERAGEA($aArgs);        if ($aMean !== null) {            $aCount = -1;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    (!Functions::isMatrixValue($k))) {                } else {                    // Is it a numeric value?                    if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {                        if (is_bool($arg)) {                            $arg = (int) $arg;                        } elseif (is_string($arg)) {                            $arg = 0;                        }                        if ($returnValue === null) {                            $returnValue = pow(($arg - $aMean), 2);                        } else {                            $returnValue += pow(($arg - $aMean), 2);                        }                        ++$aCount;                    }                }            }            if (($aCount > 0) && ($returnValue >= 0)) {                return sqrt($returnValue / $aCount);            }        }        return Functions::DIV0();    }    /**     * STDEVP.     *     * Calculates standard deviation based on the entire population     *     * Excel Function:     *        STDEVP(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function STDEVP(...$args)    {        $aArgs = Functions::flattenArrayIndexed($args);        $returnValue = null;        $aMean = self::AVERAGE($aArgs);        if ($aMean !== null) {            $aCount = 0;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {                    $arg = (int) $arg;                }                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    if ($returnValue === null) {                        $returnValue = pow(($arg - $aMean), 2);                    } else {                        $returnValue += pow(($arg - $aMean), 2);                    }                    ++$aCount;                }            }            if (($aCount > 0) && ($returnValue >= 0)) {                return sqrt($returnValue / $aCount);            }        }        return Functions::DIV0();    }    /**     * STDEVPA.     *     * Calculates standard deviation based on the entire population, including numbers, text, and logical values     *     * Excel Function:     *        STDEVPA(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function STDEVPA(...$args)    {        $aArgs = Functions::flattenArrayIndexed($args);        $returnValue = null;        $aMean = self::AVERAGEA($aArgs);        if ($aMean !== null) {            $aCount = 0;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    (!Functions::isMatrixValue($k))) {                } else {                    // Is it a numeric value?                    if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {                        if (is_bool($arg)) {                            $arg = (int) $arg;                        } elseif (is_string($arg)) {                            $arg = 0;                        }                        if ($returnValue === null) {                            $returnValue = pow(($arg - $aMean), 2);                        } else {                            $returnValue += pow(($arg - $aMean), 2);                        }                        ++$aCount;                    }                }            }            if (($aCount > 0) && ($returnValue >= 0)) {                return sqrt($returnValue / $aCount);            }        }        return Functions::DIV0();    }    /**     * STEYX.     *     * Returns the standard error of the predicted y-value for each x in the regression.     *     * @param mixed[] $yValues Data Series Y     * @param mixed[] $xValues Data Series X     *     * @return float     */    public static function STEYX($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return Functions::NA();        } elseif ($yValueCount == 1) {            return Functions::DIV0();        }        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getStdevOfResiduals();    }    /**     * TDIST.     *     * Returns the probability of Student's T distribution.     *     * @param float $value Value for the function     * @param float $degrees degrees of freedom     * @param float $tails number of tails (1 or 2)     *     * @return float     */    public static function TDIST($value, $degrees, $tails)    {        $value = Functions::flattenSingleValue($value);        $degrees = floor(Functions::flattenSingleValue($degrees));        $tails = floor(Functions::flattenSingleValue($tails));        if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {            if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {                return Functions::NAN();            }            //    tdist, which finds the probability that corresponds to a given value            //    of t with k degrees of freedom. This algorithm is translated from a            //    pascal function on p81 of "Statistical Computing in Pascal" by D            //    Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:            //    London). The above Pascal algorithm is itself a translation of the            //    fortran algoritm "AS 3" by B E Cooper of the Atlas Computer            //    Laboratory as reported in (among other places) "Applied Statistics            //    Algorithms", editied by P Griffiths and I D Hill (1985; Ellis            //    Horwood Ltd.; W. Sussex, England).            $tterm = $degrees;            $ttheta = atan2($value, sqrt($tterm));            $tc = cos($ttheta);            $ts = sin($ttheta);            $tsum = 0;            if (($degrees % 2) == 1) {                $ti = 3;                $tterm = $tc;            } else {                $ti = 2;                $tterm = 1;            }            $tsum = $tterm;            while ($ti < $degrees) {                $tterm *= $tc * $tc * ($ti - 1) / $ti;                $tsum += $tterm;                $ti += 2;            }            $tsum *= $ts;            if (($degrees % 2) == 1) {                $tsum = Functions::M_2DIVPI * ($tsum + $ttheta);            }            $tValue = 0.5 * (1 + $tsum);            if ($tails == 1) {                return 1 - abs($tValue);            }            return 1 - abs((1 - $tValue) - $tValue);        }        return Functions::VALUE();    }    /**     * TINV.     *     * Returns the one-tailed probability of the chi-squared distribution.     *     * @param float $probability Probability for the function     * @param float $degrees degrees of freedom     *     * @return float     */    public static function TINV($probability, $degrees)    {        $probability = Functions::flattenSingleValue($probability);        $degrees = floor(Functions::flattenSingleValue($degrees));        if ((is_numeric($probability)) && (is_numeric($degrees))) {            $xLo = 100;            $xHi = 0;            $x = $xNew = 1;            $dx = 1;            $i = 0;            while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {                // Apply Newton-Raphson step                $result = self::TDIST($x, $degrees, 2);                $error = $result - $probability;                if ($error == 0.0) {                    $dx = 0;                } elseif ($error < 0.0) {                    $xLo = $x;                } else {                    $xHi = $x;                }                // Avoid division by zero                if ($result != 0.0) {                    $dx = $error / $result;                    $xNew = $x - $dx;                }                // If the NR fails to converge (which for example may be the                // case if the initial guess is too rough) we apply a bisection                // step to determine a more narrow interval around the root.                if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {                    $xNew = ($xLo + $xHi) / 2;                    $dx = $xNew - $x;                }                $x = $xNew;            }            if ($i == self::MAX_ITERATIONS) {                return Functions::NA();            }            return round($x, 12);        }        return Functions::VALUE();    }    /**     * TREND.     *     * Returns values along a linear Trend     *     * @param mixed[] $yValues Data Series Y     * @param mixed[] $xValues Data Series X     * @param mixed[] $newValues Values of X for which we want to find Y     * @param bool $const a logical value specifying whether to force the intersect to equal 0     *     * @return array of float     */    public static function TREND($yValues, $xValues = [], $newValues = [], $const = true)    {        $yValues = Functions::flattenArray($yValues);        $xValues = Functions::flattenArray($xValues);        $newValues = Functions::flattenArray($newValues);        $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);        $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);        if (empty($newValues)) {            $newValues = $bestFitLinear->getXValues();        }        $returnArray = [];        foreach ($newValues as $xValue) {            $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);        }        return $returnArray;    }    /**     * TRIMMEAN.     *     * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean     *        taken by excluding a percentage of data points from the top and bottom tails     *        of a data set.     *     * Excel Function:     *        TRIMEAN(value1[,value2[, ...]], $discard)     *     * @category Statistical Functions     *     * @param mixed $args Data values     * @param float $discard Percentage to discard     *     * @return float     */    public static function TRIMMEAN(...$args)    {        $aArgs = Functions::flattenArray($args);        // Calculate        $percent = array_pop($aArgs);        if ((is_numeric($percent)) && (!is_string($percent))) {            if (($percent < 0) || ($percent > 1)) {                return Functions::NAN();            }            $mArgs = [];            foreach ($aArgs as $arg) {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $mArgs[] = $arg;                }            }            $discard = floor(self::COUNT($mArgs) * $percent / 2);            sort($mArgs);            for ($i = 0; $i < $discard; ++$i) {                array_pop($mArgs);                array_shift($mArgs);            }            return self::AVERAGE($mArgs);        }        return Functions::VALUE();    }    /**     * VARFunc.     *     * Estimates variance based on a sample.     *     * Excel Function:     *        VAR(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function VARFunc(...$args)    {        $returnValue = Functions::DIV0();        $summerA = $summerB = 0;        // Loop through arguments        $aArgs = Functions::flattenArray($args);        $aCount = 0;        foreach ($aArgs as $arg) {            if (is_bool($arg)) {                $arg = (int) $arg;            }            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                $summerA += ($arg * $arg);                $summerB += $arg;                ++$aCount;            }        }        if ($aCount > 1) {            $summerA *= $aCount;            $summerB *= $summerB;            $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));        }        return $returnValue;    }    /**     * VARA.     *     * Estimates variance based on a sample, including numbers, text, and logical values     *     * Excel Function:     *        VARA(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function VARA(...$args)    {        $returnValue = Functions::DIV0();        $summerA = $summerB = 0;        // Loop through arguments        $aArgs = Functions::flattenArrayIndexed($args);        $aCount = 0;        foreach ($aArgs as $k => $arg) {            if ((is_string($arg)) &&                (Functions::isValue($k))) {                return Functions::VALUE();            } elseif ((is_string($arg)) &&                (!Functions::isMatrixValue($k))) {            } else {                // Is it a numeric value?                if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {                    if (is_bool($arg)) {                        $arg = (int) $arg;                    } elseif (is_string($arg)) {                        $arg = 0;                    }                    $summerA += ($arg * $arg);                    $summerB += $arg;                    ++$aCount;                }            }        }        if ($aCount > 1) {            $summerA *= $aCount;            $summerB *= $summerB;            $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));        }        return $returnValue;    }    /**     * VARP.     *     * Calculates variance based on the entire population     *     * Excel Function:     *        VARP(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function VARP(...$args)    {        // Return value        $returnValue = Functions::DIV0();        $summerA = $summerB = 0;        // Loop through arguments        $aArgs = Functions::flattenArray($args);        $aCount = 0;        foreach ($aArgs as $arg) {            if (is_bool($arg)) {                $arg = (int) $arg;            }            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                $summerA += ($arg * $arg);                $summerB += $arg;                ++$aCount;            }        }        if ($aCount > 0) {            $summerA *= $aCount;            $summerB *= $summerB;            $returnValue = ($summerA - $summerB) / ($aCount * $aCount);        }        return $returnValue;    }    /**     * VARPA.     *     * Calculates variance based on the entire population, including numbers, text, and logical values     *     * Excel Function:     *        VARPA(value1[,value2[, ...]])     *     * @category Statistical Functions     *     * @param mixed ...$args Data values     *     * @return float     */    public static function VARPA(...$args)    {        $returnValue = Functions::DIV0();        $summerA = $summerB = 0;        // Loop through arguments        $aArgs = Functions::flattenArrayIndexed($args);        $aCount = 0;        foreach ($aArgs as $k => $arg) {            if ((is_string($arg)) &&                (Functions::isValue($k))) {                return Functions::VALUE();            } elseif ((is_string($arg)) &&                (!Functions::isMatrixValue($k))) {            } else {                // Is it a numeric value?                if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {                    if (is_bool($arg)) {                        $arg = (int) $arg;                    } elseif (is_string($arg)) {                        $arg = 0;                    }                    $summerA += ($arg * $arg);                    $summerB += $arg;                    ++$aCount;                }            }        }        if ($aCount > 0) {            $summerA *= $aCount;            $summerB *= $summerB;            $returnValue = ($summerA - $summerB) / ($aCount * $aCount);        }        return $returnValue;    }    /**     * WEIBULL.     *     * Returns the Weibull distribution. Use this distribution in reliability     * analysis, such as calculating a device's mean time to failure.     *     * @param float $value     * @param float $alpha Alpha Parameter     * @param float $beta Beta Parameter     * @param bool $cumulative     *     * @return float     */    public static function WEIBULL($value, $alpha, $beta, $cumulative)    {        $value = Functions::flattenSingleValue($value);        $alpha = Functions::flattenSingleValue($alpha);        $beta = Functions::flattenSingleValue($beta);        if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {            if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {                return Functions::NAN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    return 1 - exp(0 - pow($value / $beta, $alpha));                }                return ($alpha / pow($beta, $alpha)) * pow($value, $alpha - 1) * exp(0 - pow($value / $beta, $alpha));            }        }        return Functions::VALUE();    }    /**     * ZTEST.     *     * Returns the Weibull distribution. Use this distribution in reliability     * analysis, such as calculating a device's mean time to failure.     *     * @param float $dataSet     * @param float $m0 Alpha Parameter     * @param float $sigma Beta Parameter     *     * @return float     */    public static function ZTEST($dataSet, $m0, $sigma = null)    {        $dataSet = Functions::flattenArrayIndexed($dataSet);        $m0 = Functions::flattenSingleValue($m0);        $sigma = Functions::flattenSingleValue($sigma);        if ($sigma === null) {            $sigma = self::STDEV($dataSet);        }        $n = count($dataSet);        return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / sqrt($n)));    }}
 |