| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463 | <?phpnamespace PhpOffice\PhpSpreadsheet\Shared\Trend;class BestFit{    /**     * Indicator flag for a calculation error.     *     * @var bool     */    protected $error = false;    /**     * Algorithm type to use for best-fit.     *     * @var string     */    protected $bestFitType = 'undetermined';    /**     * Number of entries in the sets of x- and y-value arrays.     *     * @var int     */    protected $valueCount = 0;    /**     * X-value dataseries of values.     *     * @var float[]     */    protected $xValues = [];    /**     * Y-value dataseries of values.     *     * @var float[]     */    protected $yValues = [];    /**     * Flag indicating whether values should be adjusted to Y=0.     *     * @var bool     */    protected $adjustToZero = false;    /**     * Y-value series of best-fit values.     *     * @var float[]     */    protected $yBestFitValues = [];    protected $goodnessOfFit = 1;    protected $stdevOfResiduals = 0;    protected $covariance = 0;    protected $correlation = 0;    protected $SSRegression = 0;    protected $SSResiduals = 0;    protected $DFResiduals = 0;    protected $f = 0;    protected $slope = 0;    protected $slopeSE = 0;    protected $intersect = 0;    protected $intersectSE = 0;    protected $xOffset = 0;    protected $yOffset = 0;    public function getError()    {        return $this->error;    }    public function getBestFitType()    {        return $this->bestFitType;    }    /**     * Return the Y-Value for a specified value of X.     *     * @param float $xValue X-Value     *     * @return bool Y-Value     */    public function getValueOfYForX($xValue)    {        return false;    }    /**     * Return the X-Value for a specified value of Y.     *     * @param float $yValue Y-Value     *     * @return bool X-Value     */    public function getValueOfXForY($yValue)    {        return false;    }    /**     * Return the original set of X-Values.     *     * @return float[] X-Values     */    public function getXValues()    {        return $this->xValues;    }    /**     * Return the Equation of the best-fit line.     *     * @param int $dp Number of places of decimal precision to display     *     * @return bool     */    public function getEquation($dp = 0)    {        return false;    }    /**     * Return the Slope of the line.     *     * @param int $dp Number of places of decimal precision to display     *     * @return float     */    public function getSlope($dp = 0)    {        if ($dp != 0) {            return round($this->slope, $dp);        }        return $this->slope;    }    /**     * Return the standard error of the Slope.     *     * @param int $dp Number of places of decimal precision to display     *     * @return float     */    public function getSlopeSE($dp = 0)    {        if ($dp != 0) {            return round($this->slopeSE, $dp);        }        return $this->slopeSE;    }    /**     * Return the Value of X where it intersects Y = 0.     *     * @param int $dp Number of places of decimal precision to display     *     * @return float     */    public function getIntersect($dp = 0)    {        if ($dp != 0) {            return round($this->intersect, $dp);        }        return $this->intersect;    }    /**     * Return the standard error of the Intersect.     *     * @param int $dp Number of places of decimal precision to display     *     * @return float     */    public function getIntersectSE($dp = 0)    {        if ($dp != 0) {            return round($this->intersectSE, $dp);        }        return $this->intersectSE;    }    /**     * Return the goodness of fit for this regression.     *     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getGoodnessOfFit($dp = 0)    {        if ($dp != 0) {            return round($this->goodnessOfFit, $dp);        }        return $this->goodnessOfFit;    }    /**     * Return the goodness of fit for this regression.     *     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getGoodnessOfFitPercent($dp = 0)    {        if ($dp != 0) {            return round($this->goodnessOfFit * 100, $dp);        }        return $this->goodnessOfFit * 100;    }    /**     * Return the standard deviation of the residuals for this regression.     *     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getStdevOfResiduals($dp = 0)    {        if ($dp != 0) {            return round($this->stdevOfResiduals, $dp);        }        return $this->stdevOfResiduals;    }    /**     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getSSRegression($dp = 0)    {        if ($dp != 0) {            return round($this->SSRegression, $dp);        }        return $this->SSRegression;    }    /**     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getSSResiduals($dp = 0)    {        if ($dp != 0) {            return round($this->SSResiduals, $dp);        }        return $this->SSResiduals;    }    /**     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getDFResiduals($dp = 0)    {        if ($dp != 0) {            return round($this->DFResiduals, $dp);        }        return $this->DFResiduals;    }    /**     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getF($dp = 0)    {        if ($dp != 0) {            return round($this->f, $dp);        }        return $this->f;    }    /**     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getCovariance($dp = 0)    {        if ($dp != 0) {            return round($this->covariance, $dp);        }        return $this->covariance;    }    /**     * @param int $dp Number of places of decimal precision to return     *     * @return float     */    public function getCorrelation($dp = 0)    {        if ($dp != 0) {            return round($this->correlation, $dp);        }        return $this->correlation;    }    /**     * @return float[]     */    public function getYBestFitValues()    {        return $this->yBestFitValues;    }    protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const)    {        $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;        foreach ($this->xValues as $xKey => $xValue) {            $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);            $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);            if ($const) {                $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);            } else {                $SStot += $this->yValues[$xKey] * $this->yValues[$xKey];            }            $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);            if ($const) {                $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);            } else {                $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];            }        }        $this->SSResiduals = $SSres;        $this->DFResiduals = $this->valueCount - 1 - $const;        if ($this->DFResiduals == 0.0) {            $this->stdevOfResiduals = 0.0;        } else {            $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);        }        if (($SStot == 0.0) || ($SSres == $SStot)) {            $this->goodnessOfFit = 1;        } else {            $this->goodnessOfFit = 1 - ($SSres / $SStot);        }        $this->SSRegression = $this->goodnessOfFit * $SStot;        $this->covariance = $SScov / $this->valueCount;        $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - pow($sumX, 2)) * ($this->valueCount * $sumY2 - pow($sumY, 2)));        $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);        $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));        if ($this->SSResiduals != 0.0) {            if ($this->DFResiduals == 0.0) {                $this->f = 0.0;            } else {                $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);            }        } else {            if ($this->DFResiduals == 0.0) {                $this->f = 0.0;            } else {                $this->f = $this->SSRegression / $this->DFResiduals;            }        }    }    /**     * @param float[] $yValues     * @param float[] $xValues     * @param bool $const     */    protected function leastSquareFit(array $yValues, array $xValues, $const)    {        // calculate sums        $x_sum = array_sum($xValues);        $y_sum = array_sum($yValues);        $meanX = $x_sum / $this->valueCount;        $meanY = $y_sum / $this->valueCount;        $mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0;        for ($i = 0; $i < $this->valueCount; ++$i) {            $xy_sum += $xValues[$i] * $yValues[$i];            $xx_sum += $xValues[$i] * $xValues[$i];            $yy_sum += $yValues[$i] * $yValues[$i];            if ($const) {                $mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY);                $mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX);            } else {                $mBase += $xValues[$i] * $yValues[$i];                $mDivisor += $xValues[$i] * $xValues[$i];            }        }        // calculate slope        $this->slope = $mBase / $mDivisor;        // calculate intersect        if ($const) {            $this->intersect = $meanY - ($this->slope * $meanX);        } else {            $this->intersect = 0;        }        $this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, $meanX, $meanY, $const);    }    /**     * Define the regression.     *     * @param float[] $yValues The set of Y-values for this regression     * @param float[] $xValues The set of X-values for this regression     * @param bool $const     */    public function __construct($yValues, $xValues = [], $const = true)    {        //    Calculate number of points        $nY = count($yValues);        $nX = count($xValues);        //    Define X Values if necessary        if ($nX == 0) {            $xValues = range(1, $nY);        } elseif ($nY != $nX) {            //    Ensure both arrays of points are the same size            $this->error = true;        }        $this->valueCount = $nY;        $this->xValues = $xValues;        $this->yValues = $yValues;    }}
 |