| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 | <?phpnamespace PhpOffice\PhpSpreadsheet\Shared\Trend;class PowerBestFit extends BestFit{    /**     * Algorithm type to use for best-fit     * (Name of this Trend class).     *     * @var string     */    protected $bestFitType = 'power';    /**     * Return the Y-Value for a specified value of X.     *     * @param float $xValue X-Value     *     * @return float Y-Value     */    public function getValueOfYForX($xValue)    {        return $this->getIntersect() * pow(($xValue - $this->xOffset), $this->getSlope());    }    /**     * Return the X-Value for a specified value of Y.     *     * @param float $yValue Y-Value     *     * @return float X-Value     */    public function getValueOfXForY($yValue)    {        return pow((($yValue + $this->yOffset) / $this->getIntersect()), (1 / $this->getSlope()));    }    /**     * Return the Equation of the best-fit line.     *     * @param int $dp Number of places of decimal precision to display     *     * @return string     */    public function getEquation($dp = 0)    {        $slope = $this->getSlope($dp);        $intersect = $this->getIntersect($dp);        return 'Y = ' . $intersect . ' * X^' . $slope;    }    /**     * Return the Value of X where it intersects Y = 0.     *     * @param int $dp Number of places of decimal precision to display     *     * @return float     */    public function getIntersect($dp = 0)    {        if ($dp != 0) {            return round(exp($this->intersect), $dp);        }        return exp($this->intersect);    }    /**     * Execute the regression and calculate the goodness of fit for a set of X and Y data values.     *     * @param float[] $yValues The set of Y-values for this regression     * @param float[] $xValues The set of X-values for this regression     * @param bool $const     */    private function powerRegression($yValues, $xValues, $const)    {        foreach ($xValues as &$value) {            if ($value < 0.0) {                $value = 0 - log(abs($value));            } elseif ($value > 0.0) {                $value = log($value);            }        }        unset($value);        foreach ($yValues as &$value) {            if ($value < 0.0) {                $value = 0 - log(abs($value));            } elseif ($value > 0.0) {                $value = log($value);            }        }        unset($value);        $this->leastSquareFit($yValues, $xValues, $const);    }    /**     * Define the regression and calculate the goodness of fit for a set of X and Y data values.     *     * @param float[] $yValues The set of Y-values for this regression     * @param float[] $xValues The set of X-values for this regression     * @param bool $const     */    public function __construct($yValues, $xValues = [], $const = true)    {        if (parent::__construct($yValues, $xValues) !== false) {            $this->powerRegression($yValues, $xValues, $const);        }    }}
 |