| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 | <?phpnamespace PhpOffice\PhpSpreadsheet\Shared\Trend;use PhpOffice\PhpSpreadsheet\Shared\JAMA\Matrix;class PolynomialBestFit extends BestFit{    /**     * Algorithm type to use for best-fit     * (Name of this Trend class).     *     * @var string     */    protected $bestFitType = 'polynomial';    /**     * Polynomial order.     *     * @var int     */    protected $order = 0;    /**     * Return the order of this polynomial.     *     * @return int     */    public function getOrder()    {        return $this->order;    }    /**     * Return the Y-Value for a specified value of X.     *     * @param float $xValue X-Value     *     * @return float Y-Value     */    public function getValueOfYForX($xValue)    {        $retVal = $this->getIntersect();        $slope = $this->getSlope();        foreach ($slope as $key => $value) {            if ($value != 0.0) {                $retVal += $value * pow($xValue, $key + 1);            }        }        return $retVal;    }    /**     * Return the X-Value for a specified value of Y.     *     * @param float $yValue Y-Value     *     * @return float X-Value     */    public function getValueOfXForY($yValue)    {        return ($yValue - $this->getIntersect()) / $this->getSlope();    }    /**     * Return the Equation of the best-fit line.     *     * @param int $dp Number of places of decimal precision to display     *     * @return string     */    public function getEquation($dp = 0)    {        $slope = $this->getSlope($dp);        $intersect = $this->getIntersect($dp);        $equation = 'Y = ' . $intersect;        foreach ($slope as $key => $value) {            if ($value != 0.0) {                $equation .= ' + ' . $value . ' * X';                if ($key > 0) {                    $equation .= '^' . ($key + 1);                }            }        }        return $equation;    }    /**     * Return the Slope of the line.     *     * @param int $dp Number of places of decimal precision to display     *     * @return string     */    public function getSlope($dp = 0)    {        if ($dp != 0) {            $coefficients = [];            foreach ($this->slope as $coefficient) {                $coefficients[] = round($coefficient, $dp);            }            return $coefficients;        }        return $this->slope;    }    public function getCoefficients($dp = 0)    {        return array_merge([$this->getIntersect($dp)], $this->getSlope($dp));    }    /**     * Execute the regression and calculate the goodness of fit for a set of X and Y data values.     *     * @param int $order Order of Polynomial for this regression     * @param float[] $yValues The set of Y-values for this regression     * @param float[] $xValues The set of X-values for this regression     */    private function polynomialRegression($order, $yValues, $xValues)    {        // calculate sums        $x_sum = array_sum($xValues);        $y_sum = array_sum($yValues);        $xx_sum = $xy_sum = $yy_sum = 0;        for ($i = 0; $i < $this->valueCount; ++$i) {            $xy_sum += $xValues[$i] * $yValues[$i];            $xx_sum += $xValues[$i] * $xValues[$i];            $yy_sum += $yValues[$i] * $yValues[$i];        }        /*         *    This routine uses logic from the PHP port of polyfit version 0.1         *    written by Michael Bommarito and Paul Meagher         *         *    The function fits a polynomial function of order $order through         *    a series of x-y data points using least squares.         *         */        $A = [];        $B = [];        for ($i = 0; $i < $this->valueCount; ++$i) {            for ($j = 0; $j <= $order; ++$j) {                $A[$i][$j] = pow($xValues[$i], $j);            }        }        for ($i = 0; $i < $this->valueCount; ++$i) {            $B[$i] = [$yValues[$i]];        }        $matrixA = new Matrix($A);        $matrixB = new Matrix($B);        $C = $matrixA->solve($matrixB);        $coefficients = [];        for ($i = 0; $i < $C->getRowDimension(); ++$i) {            $r = $C->get($i, 0);            if (abs($r) <= pow(10, -9)) {                $r = 0;            }            $coefficients[] = $r;        }        $this->intersect = array_shift($coefficients);        $this->slope = $coefficients;        $this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, 0, 0, 0);        foreach ($this->xValues as $xKey => $xValue) {            $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);        }    }    /**     * Define the regression and calculate the goodness of fit for a set of X and Y data values.     *     * @param int $order Order of Polynomial for this regression     * @param float[] $yValues The set of Y-values for this regression     * @param float[] $xValues The set of X-values for this regression     * @param bool $const     */    public function __construct($order, $yValues, $xValues = [], $const = true)    {        if (parent::__construct($yValues, $xValues) !== false) {            if ($order < $this->valueCount) {                $this->bestFitType .= '_' . $order;                $this->order = $order;                $this->polynomialRegression($order, $yValues, $xValues);                if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {                    $this->error = true;                }            } else {                $this->error = true;            }        }    }}
 |