| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528 | 
							- <?php
 
- namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
 
- /**
 
-  *    For an m-by-n matrix A with m >= n, the singular value decomposition is
 
-  *    an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
 
-  *    an n-by-n orthogonal matrix V so that A = U*S*V'.
 
-  *
 
-  *    The singular values, sigma[$k] = S[$k][$k], are ordered so that
 
-  *    sigma[0] >= sigma[1] >= ... >= sigma[n-1].
 
-  *
 
-  *    The singular value decompostion always exists, so the constructor will
 
-  *    never fail.  The matrix condition number and the effective numerical
 
-  *    rank can be computed from this decomposition.
 
-  *
 
-  *    @author  Paul Meagher
 
-  *
 
-  *    @version 1.1
 
-  */
 
- class SingularValueDecomposition
 
- {
 
-     /**
 
-      * Internal storage of U.
 
-      *
 
-      * @var array
 
-      */
 
-     private $U = [];
 
-     /**
 
-      * Internal storage of V.
 
-      *
 
-      * @var array
 
-      */
 
-     private $V = [];
 
-     /**
 
-      * Internal storage of singular values.
 
-      *
 
-      * @var array
 
-      */
 
-     private $s = [];
 
-     /**
 
-      * Row dimension.
 
-      *
 
-      * @var int
 
-      */
 
-     private $m;
 
-     /**
 
-      * Column dimension.
 
-      *
 
-      * @var int
 
-      */
 
-     private $n;
 
-     /**
 
-      * Construct the singular value decomposition.
 
-      *
 
-      * Derived from LINPACK code.
 
-      *
 
-      * @param mixed $Arg Rectangular matrix
 
-      */
 
-     public function __construct($Arg)
 
-     {
 
-         // Initialize.
 
-         $A = $Arg->getArrayCopy();
 
-         $this->m = $Arg->getRowDimension();
 
-         $this->n = $Arg->getColumnDimension();
 
-         $nu = min($this->m, $this->n);
 
-         $e = [];
 
-         $work = [];
 
-         $wantu = true;
 
-         $wantv = true;
 
-         $nct = min($this->m - 1, $this->n);
 
-         $nrt = max(0, min($this->n - 2, $this->m));
 
-         // Reduce A to bidiagonal form, storing the diagonal elements
 
-         // in s and the super-diagonal elements in e.
 
-         $kMax = max($nct, $nrt);
 
-         for ($k = 0; $k < $kMax; ++$k) {
 
-             if ($k < $nct) {
 
-                 // Compute the transformation for the k-th column and
 
-                 // place the k-th diagonal in s[$k].
 
-                 // Compute 2-norm of k-th column without under/overflow.
 
-                 $this->s[$k] = 0;
 
-                 for ($i = $k; $i < $this->m; ++$i) {
 
-                     $this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
 
-                 }
 
-                 if ($this->s[$k] != 0.0) {
 
-                     if ($A[$k][$k] < 0.0) {
 
-                         $this->s[$k] = -$this->s[$k];
 
-                     }
 
-                     for ($i = $k; $i < $this->m; ++$i) {
 
-                         $A[$i][$k] /= $this->s[$k];
 
-                     }
 
-                     $A[$k][$k] += 1.0;
 
-                 }
 
-                 $this->s[$k] = -$this->s[$k];
 
-             }
 
-             for ($j = $k + 1; $j < $this->n; ++$j) {
 
-                 if (($k < $nct) & ($this->s[$k] != 0.0)) {
 
-                     // Apply the transformation.
 
-                     $t = 0;
 
-                     for ($i = $k; $i < $this->m; ++$i) {
 
-                         $t += $A[$i][$k] * $A[$i][$j];
 
-                     }
 
-                     $t = -$t / $A[$k][$k];
 
-                     for ($i = $k; $i < $this->m; ++$i) {
 
-                         $A[$i][$j] += $t * $A[$i][$k];
 
-                     }
 
-                     // Place the k-th row of A into e for the
 
-                     // subsequent calculation of the row transformation.
 
-                     $e[$j] = $A[$k][$j];
 
-                 }
 
-             }
 
-             if ($wantu and ($k < $nct)) {
 
-                 // Place the transformation in U for subsequent back
 
-                 // multiplication.
 
-                 for ($i = $k; $i < $this->m; ++$i) {
 
-                     $this->U[$i][$k] = $A[$i][$k];
 
-                 }
 
-             }
 
-             if ($k < $nrt) {
 
-                 // Compute the k-th row transformation and place the
 
-                 // k-th super-diagonal in e[$k].
 
-                 // Compute 2-norm without under/overflow.
 
-                 $e[$k] = 0;
 
-                 for ($i = $k + 1; $i < $this->n; ++$i) {
 
-                     $e[$k] = hypo($e[$k], $e[$i]);
 
-                 }
 
-                 if ($e[$k] != 0.0) {
 
-                     if ($e[$k + 1] < 0.0) {
 
-                         $e[$k] = -$e[$k];
 
-                     }
 
-                     for ($i = $k + 1; $i < $this->n; ++$i) {
 
-                         $e[$i] /= $e[$k];
 
-                     }
 
-                     $e[$k + 1] += 1.0;
 
-                 }
 
-                 $e[$k] = -$e[$k];
 
-                 if (($k + 1 < $this->m) and ($e[$k] != 0.0)) {
 
-                     // Apply the transformation.
 
-                     for ($i = $k + 1; $i < $this->m; ++$i) {
 
-                         $work[$i] = 0.0;
 
-                     }
 
-                     for ($j = $k + 1; $j < $this->n; ++$j) {
 
-                         for ($i = $k + 1; $i < $this->m; ++$i) {
 
-                             $work[$i] += $e[$j] * $A[$i][$j];
 
-                         }
 
-                     }
 
-                     for ($j = $k + 1; $j < $this->n; ++$j) {
 
-                         $t = -$e[$j] / $e[$k + 1];
 
-                         for ($i = $k + 1; $i < $this->m; ++$i) {
 
-                             $A[$i][$j] += $t * $work[$i];
 
-                         }
 
-                     }
 
-                 }
 
-                 if ($wantv) {
 
-                     // Place the transformation in V for subsequent
 
-                     // back multiplication.
 
-                     for ($i = $k + 1; $i < $this->n; ++$i) {
 
-                         $this->V[$i][$k] = $e[$i];
 
-                     }
 
-                 }
 
-             }
 
-         }
 
-         // Set up the final bidiagonal matrix or order p.
 
-         $p = min($this->n, $this->m + 1);
 
-         if ($nct < $this->n) {
 
-             $this->s[$nct] = $A[$nct][$nct];
 
-         }
 
-         if ($this->m < $p) {
 
-             $this->s[$p - 1] = 0.0;
 
-         }
 
-         if ($nrt + 1 < $p) {
 
-             $e[$nrt] = $A[$nrt][$p - 1];
 
-         }
 
-         $e[$p - 1] = 0.0;
 
-         // If required, generate U.
 
-         if ($wantu) {
 
-             for ($j = $nct; $j < $nu; ++$j) {
 
-                 for ($i = 0; $i < $this->m; ++$i) {
 
-                     $this->U[$i][$j] = 0.0;
 
-                 }
 
-                 $this->U[$j][$j] = 1.0;
 
-             }
 
-             for ($k = $nct - 1; $k >= 0; --$k) {
 
-                 if ($this->s[$k] != 0.0) {
 
-                     for ($j = $k + 1; $j < $nu; ++$j) {
 
-                         $t = 0;
 
-                         for ($i = $k; $i < $this->m; ++$i) {
 
-                             $t += $this->U[$i][$k] * $this->U[$i][$j];
 
-                         }
 
-                         $t = -$t / $this->U[$k][$k];
 
-                         for ($i = $k; $i < $this->m; ++$i) {
 
-                             $this->U[$i][$j] += $t * $this->U[$i][$k];
 
-                         }
 
-                     }
 
-                     for ($i = $k; $i < $this->m; ++$i) {
 
-                         $this->U[$i][$k] = -$this->U[$i][$k];
 
-                     }
 
-                     $this->U[$k][$k] = 1.0 + $this->U[$k][$k];
 
-                     for ($i = 0; $i < $k - 1; ++$i) {
 
-                         $this->U[$i][$k] = 0.0;
 
-                     }
 
-                 } else {
 
-                     for ($i = 0; $i < $this->m; ++$i) {
 
-                         $this->U[$i][$k] = 0.0;
 
-                     }
 
-                     $this->U[$k][$k] = 1.0;
 
-                 }
 
-             }
 
-         }
 
-         // If required, generate V.
 
-         if ($wantv) {
 
-             for ($k = $this->n - 1; $k >= 0; --$k) {
 
-                 if (($k < $nrt) and ($e[$k] != 0.0)) {
 
-                     for ($j = $k + 1; $j < $nu; ++$j) {
 
-                         $t = 0;
 
-                         for ($i = $k + 1; $i < $this->n; ++$i) {
 
-                             $t += $this->V[$i][$k] * $this->V[$i][$j];
 
-                         }
 
-                         $t = -$t / $this->V[$k + 1][$k];
 
-                         for ($i = $k + 1; $i < $this->n; ++$i) {
 
-                             $this->V[$i][$j] += $t * $this->V[$i][$k];
 
-                         }
 
-                     }
 
-                 }
 
-                 for ($i = 0; $i < $this->n; ++$i) {
 
-                     $this->V[$i][$k] = 0.0;
 
-                 }
 
-                 $this->V[$k][$k] = 1.0;
 
-             }
 
-         }
 
-         // Main iteration loop for the singular values.
 
-         $pp = $p - 1;
 
-         $iter = 0;
 
-         $eps = pow(2.0, -52.0);
 
-         while ($p > 0) {
 
-             // Here is where a test for too many iterations would go.
 
-             // This section of the program inspects for negligible
 
-             // elements in the s and e arrays.  On completion the
 
-             // variables kase and k are set as follows:
 
-             // kase = 1  if s(p) and e[k-1] are negligible and k<p
 
-             // kase = 2  if s(k) is negligible and k<p
 
-             // kase = 3  if e[k-1] is negligible, k<p, and
 
-             //           s(k), ..., s(p) are not negligible (qr step).
 
-             // kase = 4  if e(p-1) is negligible (convergence).
 
-             for ($k = $p - 2; $k >= -1; --$k) {
 
-                 if ($k == -1) {
 
-                     break;
 
-                 }
 
-                 if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k + 1]))) {
 
-                     $e[$k] = 0.0;
 
-                     break;
 
-                 }
 
-             }
 
-             if ($k == $p - 2) {
 
-                 $kase = 4;
 
-             } else {
 
-                 for ($ks = $p - 1; $ks >= $k; --$ks) {
 
-                     if ($ks == $k) {
 
-                         break;
 
-                     }
 
-                     $t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks - 1]) : 0.);
 
-                     if (abs($this->s[$ks]) <= $eps * $t) {
 
-                         $this->s[$ks] = 0.0;
 
-                         break;
 
-                     }
 
-                 }
 
-                 if ($ks == $k) {
 
-                     $kase = 3;
 
-                 } elseif ($ks == $p - 1) {
 
-                     $kase = 1;
 
-                 } else {
 
-                     $kase = 2;
 
-                     $k = $ks;
 
-                 }
 
-             }
 
-             ++$k;
 
-             // Perform the task indicated by kase.
 
-             switch ($kase) {
 
-                 // Deflate negligible s(p).
 
-                 case 1:
 
-                     $f = $e[$p - 2];
 
-                     $e[$p - 2] = 0.0;
 
-                     for ($j = $p - 2; $j >= $k; --$j) {
 
-                         $t = hypo($this->s[$j], $f);
 
-                         $cs = $this->s[$j] / $t;
 
-                         $sn = $f / $t;
 
-                         $this->s[$j] = $t;
 
-                         if ($j != $k) {
 
-                             $f = -$sn * $e[$j - 1];
 
-                             $e[$j - 1] = $cs * $e[$j - 1];
 
-                         }
 
-                         if ($wantv) {
 
-                             for ($i = 0; $i < $this->n; ++$i) {
 
-                                 $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p - 1];
 
-                                 $this->V[$i][$p - 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p - 1];
 
-                                 $this->V[$i][$j] = $t;
 
-                             }
 
-                         }
 
-                     }
 
-                     break;
 
-                 // Split at negligible s(k).
 
-                 case 2:
 
-                     $f = $e[$k - 1];
 
-                     $e[$k - 1] = 0.0;
 
-                     for ($j = $k; $j < $p; ++$j) {
 
-                         $t = hypo($this->s[$j], $f);
 
-                         $cs = $this->s[$j] / $t;
 
-                         $sn = $f / $t;
 
-                         $this->s[$j] = $t;
 
-                         $f = -$sn * $e[$j];
 
-                         $e[$j] = $cs * $e[$j];
 
-                         if ($wantu) {
 
-                             for ($i = 0; $i < $this->m; ++$i) {
 
-                                 $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k - 1];
 
-                                 $this->U[$i][$k - 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k - 1];
 
-                                 $this->U[$i][$j] = $t;
 
-                             }
 
-                         }
 
-                     }
 
-                     break;
 
-                 // Perform one qr step.
 
-                 case 3:
 
-                     // Calculate the shift.
 
-                     $scale = max(max(max(max(abs($this->s[$p - 1]), abs($this->s[$p - 2])), abs($e[$p - 2])), abs($this->s[$k])), abs($e[$k]));
 
-                     $sp = $this->s[$p - 1] / $scale;
 
-                     $spm1 = $this->s[$p - 2] / $scale;
 
-                     $epm1 = $e[$p - 2] / $scale;
 
-                     $sk = $this->s[$k] / $scale;
 
-                     $ek = $e[$k] / $scale;
 
-                     $b = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
 
-                     $c = ($sp * $epm1) * ($sp * $epm1);
 
-                     $shift = 0.0;
 
-                     if (($b != 0.0) || ($c != 0.0)) {
 
-                         $shift = sqrt($b * $b + $c);
 
-                         if ($b < 0.0) {
 
-                             $shift = -$shift;
 
-                         }
 
-                         $shift = $c / ($b + $shift);
 
-                     }
 
-                     $f = ($sk + $sp) * ($sk - $sp) + $shift;
 
-                     $g = $sk * $ek;
 
-                     // Chase zeros.
 
-                     for ($j = $k; $j < $p - 1; ++$j) {
 
-                         $t = hypo($f, $g);
 
-                         $cs = $f / $t;
 
-                         $sn = $g / $t;
 
-                         if ($j != $k) {
 
-                             $e[$j - 1] = $t;
 
-                         }
 
-                         $f = $cs * $this->s[$j] + $sn * $e[$j];
 
-                         $e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
 
-                         $g = $sn * $this->s[$j + 1];
 
-                         $this->s[$j + 1] = $cs * $this->s[$j + 1];
 
-                         if ($wantv) {
 
-                             for ($i = 0; $i < $this->n; ++$i) {
 
-                                 $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j + 1];
 
-                                 $this->V[$i][$j + 1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j + 1];
 
-                                 $this->V[$i][$j] = $t;
 
-                             }
 
-                         }
 
-                         $t = hypo($f, $g);
 
-                         $cs = $f / $t;
 
-                         $sn = $g / $t;
 
-                         $this->s[$j] = $t;
 
-                         $f = $cs * $e[$j] + $sn * $this->s[$j + 1];
 
-                         $this->s[$j + 1] = -$sn * $e[$j] + $cs * $this->s[$j + 1];
 
-                         $g = $sn * $e[$j + 1];
 
-                         $e[$j + 1] = $cs * $e[$j + 1];
 
-                         if ($wantu && ($j < $this->m - 1)) {
 
-                             for ($i = 0; $i < $this->m; ++$i) {
 
-                                 $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j + 1];
 
-                                 $this->U[$i][$j + 1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j + 1];
 
-                                 $this->U[$i][$j] = $t;
 
-                             }
 
-                         }
 
-                     }
 
-                     $e[$p - 2] = $f;
 
-                     $iter = $iter + 1;
 
-                     break;
 
-                 // Convergence.
 
-                 case 4:
 
-                     // Make the singular values positive.
 
-                     if ($this->s[$k] <= 0.0) {
 
-                         $this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);
 
-                         if ($wantv) {
 
-                             for ($i = 0; $i <= $pp; ++$i) {
 
-                                 $this->V[$i][$k] = -$this->V[$i][$k];
 
-                             }
 
-                         }
 
-                     }
 
-                     // Order the singular values.
 
-                     while ($k < $pp) {
 
-                         if ($this->s[$k] >= $this->s[$k + 1]) {
 
-                             break;
 
-                         }
 
-                         $t = $this->s[$k];
 
-                         $this->s[$k] = $this->s[$k + 1];
 
-                         $this->s[$k + 1] = $t;
 
-                         if ($wantv and ($k < $this->n - 1)) {
 
-                             for ($i = 0; $i < $this->n; ++$i) {
 
-                                 $t = $this->V[$i][$k + 1];
 
-                                 $this->V[$i][$k + 1] = $this->V[$i][$k];
 
-                                 $this->V[$i][$k] = $t;
 
-                             }
 
-                         }
 
-                         if ($wantu and ($k < $this->m - 1)) {
 
-                             for ($i = 0; $i < $this->m; ++$i) {
 
-                                 $t = $this->U[$i][$k + 1];
 
-                                 $this->U[$i][$k + 1] = $this->U[$i][$k];
 
-                                 $this->U[$i][$k] = $t;
 
-                             }
 
-                         }
 
-                         ++$k;
 
-                     }
 
-                     $iter = 0;
 
-                     --$p;
 
-                     break;
 
-             } // end switch
 
-         } // end while
 
-     }
 
-     /**
 
-      * Return the left singular vectors.
 
-      *
 
-      * @return Matrix U
 
-      */
 
-     public function getU()
 
-     {
 
-         return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
 
-     }
 
-     /**
 
-      * Return the right singular vectors.
 
-      *
 
-      * @return Matrix V
 
-      */
 
-     public function getV()
 
-     {
 
-         return new Matrix($this->V);
 
-     }
 
-     /**
 
-      * Return the one-dimensional array of singular values.
 
-      *
 
-      * @return array diagonal of S
 
-      */
 
-     public function getSingularValues()
 
-     {
 
-         return $this->s;
 
-     }
 
-     /**
 
-      * Return the diagonal matrix of singular values.
 
-      *
 
-      * @return Matrix S
 
-      */
 
-     public function getS()
 
-     {
 
-         for ($i = 0; $i < $this->n; ++$i) {
 
-             for ($j = 0; $j < $this->n; ++$j) {
 
-                 $S[$i][$j] = 0.0;
 
-             }
 
-             $S[$i][$i] = $this->s[$i];
 
-         }
 
-         return new Matrix($S);
 
-     }
 
-     /**
 
-      * Two norm.
 
-      *
 
-      * @return float max(S)
 
-      */
 
-     public function norm2()
 
-     {
 
-         return $this->s[0];
 
-     }
 
-     /**
 
-      * Two norm condition number.
 
-      *
 
-      * @return float max(S)/min(S)
 
-      */
 
-     public function cond()
 
-     {
 
-         return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
 
-     }
 
-     /**
 
-      * Effective numerical matrix rank.
 
-      *
 
-      * @return int Number of nonnegligible singular values
 
-      */
 
-     public function rank()
 
-     {
 
-         $eps = pow(2.0, -52.0);
 
-         $tol = max($this->m, $this->n) * $this->s[0] * $eps;
 
-         $r = 0;
 
-         $iMax = count($this->s);
 
-         for ($i = 0; $i < $iMax; ++$i) {
 
-             if ($this->s[$i] > $tol) {
 
-                 ++$r;
 
-             }
 
-         }
 
-         return $r;
 
-     }
 
- }
 
 
  |