| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 | 
							- <?php
 
- namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
 
- use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
 
- /**
 
-  *    For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
 
-  *    unit lower triangular matrix L, an n-by-n upper triangular matrix U,
 
-  *    and a permutation vector piv of length m so that A(piv,:) = L*U.
 
-  *    If m < n, then L is m-by-m and U is m-by-n.
 
-  *
 
-  *    The LU decompostion with pivoting always exists, even if the matrix is
 
-  *    singular, so the constructor will never fail. The primary use of the
 
-  *    LU decomposition is in the solution of square systems of simultaneous
 
-  *    linear equations. This will fail if isNonsingular() returns false.
 
-  *
 
-  *    @author Paul Meagher
 
-  *    @author Bartosz Matosiuk
 
-  *    @author Michael Bommarito
 
-  *
 
-  *    @version 1.1
 
-  */
 
- class LUDecomposition
 
- {
 
-     const MATRIX_SINGULAR_EXCEPTION = 'Can only perform operation on singular matrix.';
 
-     const MATRIX_SQUARE_EXCEPTION = 'Mismatched Row dimension';
 
-     /**
 
-      * Decomposition storage.
 
-      *
 
-      * @var array
 
-      */
 
-     private $LU = [];
 
-     /**
 
-      * Row dimension.
 
-      *
 
-      * @var int
 
-      */
 
-     private $m;
 
-     /**
 
-      * Column dimension.
 
-      *
 
-      * @var int
 
-      */
 
-     private $n;
 
-     /**
 
-      * Pivot sign.
 
-      *
 
-      * @var int
 
-      */
 
-     private $pivsign;
 
-     /**
 
-      * Internal storage of pivot vector.
 
-      *
 
-      * @var array
 
-      */
 
-     private $piv = [];
 
-     /**
 
-      * LU Decomposition constructor.
 
-      *
 
-      * @param Matrix $A Rectangular matrix
 
-      */
 
-     public function __construct($A)
 
-     {
 
-         if ($A instanceof Matrix) {
 
-             // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
 
-             $this->LU = $A->getArray();
 
-             $this->m = $A->getRowDimension();
 
-             $this->n = $A->getColumnDimension();
 
-             for ($i = 0; $i < $this->m; ++$i) {
 
-                 $this->piv[$i] = $i;
 
-             }
 
-             $this->pivsign = 1;
 
-             $LUrowi = $LUcolj = [];
 
-             // Outer loop.
 
-             for ($j = 0; $j < $this->n; ++$j) {
 
-                 // Make a copy of the j-th column to localize references.
 
-                 for ($i = 0; $i < $this->m; ++$i) {
 
-                     $LUcolj[$i] = &$this->LU[$i][$j];
 
-                 }
 
-                 // Apply previous transformations.
 
-                 for ($i = 0; $i < $this->m; ++$i) {
 
-                     $LUrowi = $this->LU[$i];
 
-                     // Most of the time is spent in the following dot product.
 
-                     $kmax = min($i, $j);
 
-                     $s = 0.0;
 
-                     for ($k = 0; $k < $kmax; ++$k) {
 
-                         $s += $LUrowi[$k] * $LUcolj[$k];
 
-                     }
 
-                     $LUrowi[$j] = $LUcolj[$i] -= $s;
 
-                 }
 
-                 // Find pivot and exchange if necessary.
 
-                 $p = $j;
 
-                 for ($i = $j + 1; $i < $this->m; ++$i) {
 
-                     if (abs($LUcolj[$i]) > abs($LUcolj[$p])) {
 
-                         $p = $i;
 
-                     }
 
-                 }
 
-                 if ($p != $j) {
 
-                     for ($k = 0; $k < $this->n; ++$k) {
 
-                         $t = $this->LU[$p][$k];
 
-                         $this->LU[$p][$k] = $this->LU[$j][$k];
 
-                         $this->LU[$j][$k] = $t;
 
-                     }
 
-                     $k = $this->piv[$p];
 
-                     $this->piv[$p] = $this->piv[$j];
 
-                     $this->piv[$j] = $k;
 
-                     $this->pivsign = $this->pivsign * -1;
 
-                 }
 
-                 // Compute multipliers.
 
-                 if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) {
 
-                     for ($i = $j + 1; $i < $this->m; ++$i) {
 
-                         $this->LU[$i][$j] /= $this->LU[$j][$j];
 
-                     }
 
-                 }
 
-             }
 
-         } else {
 
-             throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION);
 
-         }
 
-     }
 
-     //    function __construct()
 
-     /**
 
-      * Get lower triangular factor.
 
-      *
 
-      * @return Matrix Lower triangular factor
 
-      */
 
-     public function getL()
 
-     {
 
-         for ($i = 0; $i < $this->m; ++$i) {
 
-             for ($j = 0; $j < $this->n; ++$j) {
 
-                 if ($i > $j) {
 
-                     $L[$i][$j] = $this->LU[$i][$j];
 
-                 } elseif ($i == $j) {
 
-                     $L[$i][$j] = 1.0;
 
-                 } else {
 
-                     $L[$i][$j] = 0.0;
 
-                 }
 
-             }
 
-         }
 
-         return new Matrix($L);
 
-     }
 
-     //    function getL()
 
-     /**
 
-      * Get upper triangular factor.
 
-      *
 
-      * @return Matrix Upper triangular factor
 
-      */
 
-     public function getU()
 
-     {
 
-         for ($i = 0; $i < $this->n; ++$i) {
 
-             for ($j = 0; $j < $this->n; ++$j) {
 
-                 if ($i <= $j) {
 
-                     $U[$i][$j] = $this->LU[$i][$j];
 
-                 } else {
 
-                     $U[$i][$j] = 0.0;
 
-                 }
 
-             }
 
-         }
 
-         return new Matrix($U);
 
-     }
 
-     //    function getU()
 
-     /**
 
-      * Return pivot permutation vector.
 
-      *
 
-      * @return array Pivot vector
 
-      */
 
-     public function getPivot()
 
-     {
 
-         return $this->piv;
 
-     }
 
-     //    function getPivot()
 
-     /**
 
-      * Alias for getPivot.
 
-      *
 
-      *    @see getPivot
 
-      */
 
-     public function getDoublePivot()
 
-     {
 
-         return $this->getPivot();
 
-     }
 
-     //    function getDoublePivot()
 
-     /**
 
-      *    Is the matrix nonsingular?
 
-      *
 
-      * @return bool true if U, and hence A, is nonsingular
 
-      */
 
-     public function isNonsingular()
 
-     {
 
-         for ($j = 0; $j < $this->n; ++$j) {
 
-             if ($this->LU[$j][$j] == 0) {
 
-                 return false;
 
-             }
 
-         }
 
-         return true;
 
-     }
 
-     //    function isNonsingular()
 
-     /**
 
-      * Count determinants.
 
-      *
 
-      * @return array d matrix deterninat
 
-      */
 
-     public function det()
 
-     {
 
-         if ($this->m == $this->n) {
 
-             $d = $this->pivsign;
 
-             for ($j = 0; $j < $this->n; ++$j) {
 
-                 $d *= $this->LU[$j][$j];
 
-             }
 
-             return $d;
 
-         }
 
-         throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
 
-     }
 
-     //    function det()
 
-     /**
 
-      * Solve A*X = B.
 
-      *
 
-      * @param mixed $B a Matrix with as many rows as A and any number of columns
 
-      *
 
-      * @throws CalculationException illegalArgumentException Matrix row dimensions must agree
 
-      * @throws CalculationException runtimeException  Matrix is singular
 
-      *
 
-      * @return Matrix X so that L*U*X = B(piv,:)
 
-      */
 
-     public function solve($B)
 
-     {
 
-         if ($B->getRowDimension() == $this->m) {
 
-             if ($this->isNonsingular()) {
 
-                 // Copy right hand side with pivoting
 
-                 $nx = $B->getColumnDimension();
 
-                 $X = $B->getMatrix($this->piv, 0, $nx - 1);
 
-                 // Solve L*Y = B(piv,:)
 
-                 for ($k = 0; $k < $this->n; ++$k) {
 
-                     for ($i = $k + 1; $i < $this->n; ++$i) {
 
-                         for ($j = 0; $j < $nx; ++$j) {
 
-                             $X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
 
-                         }
 
-                     }
 
-                 }
 
-                 // Solve U*X = Y;
 
-                 for ($k = $this->n - 1; $k >= 0; --$k) {
 
-                     for ($j = 0; $j < $nx; ++$j) {
 
-                         $X->A[$k][$j] /= $this->LU[$k][$k];
 
-                     }
 
-                     for ($i = 0; $i < $k; ++$i) {
 
-                         for ($j = 0; $j < $nx; ++$j) {
 
-                             $X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
 
-                         }
 
-                     }
 
-                 }
 
-                 return $X;
 
-             }
 
-             throw new CalculationException(self::MATRIX_SINGULAR_EXCEPTION);
 
-         }
 
-         throw new CalculationException(self::MATRIX_SQUARE_EXCEPTION);
 
-     }
 
- }
 
 
  |