| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 | 
							- <?php
 
- namespace PhpOffice\PhpSpreadsheet\Shared\JAMA;
 
- use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;
 
- /**
 
-  *    Cholesky decomposition class.
 
-  *
 
-  *    For a symmetric, positive definite matrix A, the Cholesky decomposition
 
-  *    is an lower triangular matrix L so that A = L*L'.
 
-  *
 
-  *    If the matrix is not symmetric or positive definite, the constructor
 
-  *    returns a partial decomposition and sets an internal flag that may
 
-  *    be queried by the isSPD() method.
 
-  *
 
-  *    @author Paul Meagher
 
-  *    @author Michael Bommarito
 
-  *
 
-  *    @version 1.2
 
-  */
 
- class CholeskyDecomposition
 
- {
 
-     /**
 
-      * Decomposition storage.
 
-      *
 
-      * @var array
 
-      */
 
-     private $L = [];
 
-     /**
 
-      * Matrix row and column dimension.
 
-      *
 
-      * @var int
 
-      */
 
-     private $m;
 
-     /**
 
-      * Symmetric positive definite flag.
 
-      *
 
-      * @var bool
 
-      */
 
-     private $isspd = true;
 
-     /**
 
-      * CholeskyDecomposition.
 
-      *
 
-      *    Class constructor - decomposes symmetric positive definite matrix
 
-      *
 
-      * @param Matrix $A Matrix square symmetric positive definite matrix
 
-      */
 
-     public function __construct(Matrix $A)
 
-     {
 
-         $this->L = $A->getArray();
 
-         $this->m = $A->getRowDimension();
 
-         for ($i = 0; $i < $this->m; ++$i) {
 
-             for ($j = $i; $j < $this->m; ++$j) {
 
-                 for ($sum = $this->L[$i][$j], $k = $i - 1; $k >= 0; --$k) {
 
-                     $sum -= $this->L[$i][$k] * $this->L[$j][$k];
 
-                 }
 
-                 if ($i == $j) {
 
-                     if ($sum >= 0) {
 
-                         $this->L[$i][$i] = sqrt($sum);
 
-                     } else {
 
-                         $this->isspd = false;
 
-                     }
 
-                 } else {
 
-                     if ($this->L[$i][$i] != 0) {
 
-                         $this->L[$j][$i] = $sum / $this->L[$i][$i];
 
-                     }
 
-                 }
 
-             }
 
-             for ($k = $i + 1; $k < $this->m; ++$k) {
 
-                 $this->L[$i][$k] = 0.0;
 
-             }
 
-         }
 
-     }
 
-     /**
 
-      *    Is the matrix symmetric and positive definite?
 
-      *
 
-      * @return bool
 
-      */
 
-     public function isSPD()
 
-     {
 
-         return $this->isspd;
 
-     }
 
-     /**
 
-      * getL.
 
-      *
 
-      * Return triangular factor.
 
-      *
 
-      * @return Matrix Lower triangular matrix
 
-      */
 
-     public function getL()
 
-     {
 
-         return new Matrix($this->L);
 
-     }
 
-     /**
 
-      * Solve A*X = B.
 
-      *
 
-      * @param $B Row-equal matrix
 
-      *
 
-      * @return Matrix L * L' * X = B
 
-      */
 
-     public function solve(Matrix $B)
 
-     {
 
-         if ($B->getRowDimension() == $this->m) {
 
-             if ($this->isspd) {
 
-                 $X = $B->getArrayCopy();
 
-                 $nx = $B->getColumnDimension();
 
-                 for ($k = 0; $k < $this->m; ++$k) {
 
-                     for ($i = $k + 1; $i < $this->m; ++$i) {
 
-                         for ($j = 0; $j < $nx; ++$j) {
 
-                             $X[$i][$j] -= $X[$k][$j] * $this->L[$i][$k];
 
-                         }
 
-                     }
 
-                     for ($j = 0; $j < $nx; ++$j) {
 
-                         $X[$k][$j] /= $this->L[$k][$k];
 
-                     }
 
-                 }
 
-                 for ($k = $this->m - 1; $k >= 0; --$k) {
 
-                     for ($j = 0; $j < $nx; ++$j) {
 
-                         $X[$k][$j] /= $this->L[$k][$k];
 
-                     }
 
-                     for ($i = 0; $i < $k; ++$i) {
 
-                         for ($j = 0; $j < $nx; ++$j) {
 
-                             $X[$i][$j] -= $X[$k][$j] * $this->L[$k][$i];
 
-                         }
 
-                     }
 
-                 }
 
-                 return new Matrix($X, $this->m, $nx);
 
-             }
 
-             throw new CalculationException(Matrix::MATRIX_SPD_EXCEPTION);
 
-         }
 
-         throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);
 
-     }
 
- }
 
 
  |