| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621 | 
							- <?php
 
- namespace PhpOffice\PhpSpreadsheet\Calculation;
 
- use PhpOffice\PhpSpreadsheet\Shared\Trend\Trend;
 
- class Statistical
 
- {
 
-     const LOG_GAMMA_X_MAX_VALUE = 2.55e305;
 
-     const XMININ = 2.23e-308;
 
-     const EPS = 2.22e-16;
 
-     const MAX_VALUE = 1.2e308;
 
-     const MAX_ITERATIONS = 256;
 
-     const SQRT2PI = 2.5066282746310005024157652848110452530069867406099;
 
-     private static function checkTrendArrays(&$array1, &$array2)
 
-     {
 
-         if (!is_array($array1)) {
 
-             $array1 = [$array1];
 
-         }
 
-         if (!is_array($array2)) {
 
-             $array2 = [$array2];
 
-         }
 
-         $array1 = Functions::flattenArray($array1);
 
-         $array2 = Functions::flattenArray($array2);
 
-         foreach ($array1 as $key => $value) {
 
-             if ((is_bool($value)) || (is_string($value)) || ($value === null)) {
 
-                 unset($array1[$key], $array2[$key]);
 
-             }
 
-         }
 
-         foreach ($array2 as $key => $value) {
 
-             if ((is_bool($value)) || (is_string($value)) || ($value === null)) {
 
-                 unset($array1[$key], $array2[$key]);
 
-             }
 
-         }
 
-         $array1 = array_merge($array1);
 
-         $array2 = array_merge($array2);
 
-         return true;
 
-     }
 
-     /**
 
-      * Incomplete beta function.
 
-      *
 
-      * @author Jaco van Kooten
 
-      * @author Paul Meagher
 
-      *
 
-      * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).
 
-      *
 
-      * @param mixed $x require 0<=x<=1
 
-      * @param mixed $p require p>0
 
-      * @param mixed $q require q>0
 
-      *
 
-      * @return float 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow
 
-      */
 
-     private static function incompleteBeta($x, $p, $q)
 
-     {
 
-         if ($x <= 0.0) {
 
-             return 0.0;
 
-         } elseif ($x >= 1.0) {
 
-             return 1.0;
 
-         } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) {
 
-             return 0.0;
 
-         }
 
-         $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));
 
-         if ($x < ($p + 1.0) / ($p + $q + 2.0)) {
 
-             return $beta_gam * self::betaFraction($x, $p, $q) / $p;
 
-         }
 
-         return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q);
 
-     }
 
-     // Function cache for logBeta function
 
-     private static $logBetaCacheP = 0.0;
 
-     private static $logBetaCacheQ = 0.0;
 
-     private static $logBetaCacheResult = 0.0;
 
-     /**
 
-      * The natural logarithm of the beta function.
 
-      *
 
-      * @param mixed $p require p>0
 
-      * @param mixed $q require q>0
 
-      *
 
-      * @return float 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
 
-      *
 
-      * @author Jaco van Kooten
 
-      */
 
-     private static function logBeta($p, $q)
 
-     {
 
-         if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) {
 
-             self::$logBetaCacheP = $p;
 
-             self::$logBetaCacheQ = $q;
 
-             if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) {
 
-                 self::$logBetaCacheResult = 0.0;
 
-             } else {
 
-                 self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q);
 
-             }
 
-         }
 
-         return self::$logBetaCacheResult;
 
-     }
 
-     /**
 
-      * Evaluates of continued fraction part of incomplete beta function.
 
-      * Based on an idea from Numerical Recipes (W.H. Press et al, 1992).
 
-      *
 
-      * @author Jaco van Kooten
 
-      *
 
-      * @param mixed $x
 
-      * @param mixed $p
 
-      * @param mixed $q
 
-      *
 
-      * @return float
 
-      */
 
-     private static function betaFraction($x, $p, $q)
 
-     {
 
-         $c = 1.0;
 
-         $sum_pq = $p + $q;
 
-         $p_plus = $p + 1.0;
 
-         $p_minus = $p - 1.0;
 
-         $h = 1.0 - $sum_pq * $x / $p_plus;
 
-         if (abs($h) < self::XMININ) {
 
-             $h = self::XMININ;
 
-         }
 
-         $h = 1.0 / $h;
 
-         $frac = $h;
 
-         $m = 1;
 
-         $delta = 0.0;
 
-         while ($m <= self::MAX_ITERATIONS && abs($delta - 1.0) > Functions::PRECISION) {
 
-             $m2 = 2 * $m;
 
-             // even index for d
 
-             $d = $m * ($q - $m) * $x / (($p_minus + $m2) * ($p + $m2));
 
-             $h = 1.0 + $d * $h;
 
-             if (abs($h) < self::XMININ) {
 
-                 $h = self::XMININ;
 
-             }
 
-             $h = 1.0 / $h;
 
-             $c = 1.0 + $d / $c;
 
-             if (abs($c) < self::XMININ) {
 
-                 $c = self::XMININ;
 
-             }
 
-             $frac *= $h * $c;
 
-             // odd index for d
 
-             $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));
 
-             $h = 1.0 + $d * $h;
 
-             if (abs($h) < self::XMININ) {
 
-                 $h = self::XMININ;
 
-             }
 
-             $h = 1.0 / $h;
 
-             $c = 1.0 + $d / $c;
 
-             if (abs($c) < self::XMININ) {
 
-                 $c = self::XMININ;
 
-             }
 
-             $delta = $h * $c;
 
-             $frac *= $delta;
 
-             ++$m;
 
-         }
 
-         return $frac;
 
-     }
 
-     /**
 
-      * logGamma function.
 
-      *
 
-      * @version 1.1
 
-      *
 
-      * @author Jaco van Kooten
 
-      *
 
-      * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.
 
-      *
 
-      * The natural logarithm of the gamma function. <br />
 
-      * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />
 
-      * Applied Mathematics Division <br />
 
-      * Argonne National Laboratory <br />
 
-      * Argonne, IL 60439 <br />
 
-      * <p>
 
-      * References:
 
-      * <ol>
 
-      * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural
 
-      *     Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>
 
-      * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>
 
-      * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>
 
-      * </ol>
 
-      * </p>
 
-      * <p>
 
-      * From the original documentation:
 
-      * </p>
 
-      * <p>
 
-      * This routine calculates the LOG(GAMMA) function for a positive real argument X.
 
-      * Computation is based on an algorithm outlined in references 1 and 2.
 
-      * The program uses rational functions that theoretically approximate LOG(GAMMA)
 
-      * to at least 18 significant decimal digits. The approximation for X > 12 is from
 
-      * reference 3, while approximations for X < 12.0 are similar to those in reference
 
-      * 1, but are unpublished. The accuracy achieved depends on the arithmetic system,
 
-      * the compiler, the intrinsic functions, and proper selection of the
 
-      * machine-dependent constants.
 
-      * </p>
 
-      * <p>
 
-      * Error returns: <br />
 
-      * The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
 
-      * The computation is believed to be free of underflow and overflow.
 
-      * </p>
 
-      *
 
-      * @return float MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305
 
-      */
 
-     // Function cache for logGamma
 
-     private static $logGammaCacheResult = 0.0;
 
-     private static $logGammaCacheX = 0.0;
 
-     private static function logGamma($x)
 
-     {
 
-         // Log Gamma related constants
 
-         static $lg_d1 = -0.5772156649015328605195174;
 
-         static $lg_d2 = 0.4227843350984671393993777;
 
-         static $lg_d4 = 1.791759469228055000094023;
 
-         static $lg_p1 = [
 
-             4.945235359296727046734888,
 
-             201.8112620856775083915565,
 
-             2290.838373831346393026739,
 
-             11319.67205903380828685045,
 
-             28557.24635671635335736389,
 
-             38484.96228443793359990269,
 
-             26377.48787624195437963534,
 
-             7225.813979700288197698961,
 
-         ];
 
-         static $lg_p2 = [
 
-             4.974607845568932035012064,
 
-             542.4138599891070494101986,
 
-             15506.93864978364947665077,
 
-             184793.2904445632425417223,
 
-             1088204.76946882876749847,
 
-             3338152.967987029735917223,
 
-             5106661.678927352456275255,
 
-             3074109.054850539556250927,
 
-         ];
 
-         static $lg_p4 = [
 
-             14745.02166059939948905062,
 
-             2426813.369486704502836312,
 
-             121475557.4045093227939592,
 
-             2663432449.630976949898078,
 
-             29403789566.34553899906876,
 
-             170266573776.5398868392998,
 
-             492612579337.743088758812,
 
-             560625185622.3951465078242,
 
-         ];
 
-         static $lg_q1 = [
 
-             67.48212550303777196073036,
 
-             1113.332393857199323513008,
 
-             7738.757056935398733233834,
 
-             27639.87074403340708898585,
 
-             54993.10206226157329794414,
 
-             61611.22180066002127833352,
 
-             36351.27591501940507276287,
 
-             8785.536302431013170870835,
 
-         ];
 
-         static $lg_q2 = [
 
-             183.0328399370592604055942,
 
-             7765.049321445005871323047,
 
-             133190.3827966074194402448,
 
-             1136705.821321969608938755,
 
-             5267964.117437946917577538,
 
-             13467014.54311101692290052,
 
-             17827365.30353274213975932,
 
-             9533095.591844353613395747,
 
-         ];
 
-         static $lg_q4 = [
 
-             2690.530175870899333379843,
 
-             639388.5654300092398984238,
 
-             41355999.30241388052042842,
 
-             1120872109.61614794137657,
 
-             14886137286.78813811542398,
 
-             101680358627.2438228077304,
 
-             341747634550.7377132798597,
 
-             446315818741.9713286462081,
 
-         ];
 
-         static $lg_c = [
 
-             -0.001910444077728,
 
-             8.4171387781295e-4,
 
-             -5.952379913043012e-4,
 
-             7.93650793500350248e-4,
 
-             -0.002777777777777681622553,
 
-             0.08333333333333333331554247,
 
-             0.0057083835261,
 
-         ];
 
-         // Rough estimate of the fourth root of logGamma_xBig
 
-         static $lg_frtbig = 2.25e76;
 
-         static $pnt68 = 0.6796875;
 
-         if ($x == self::$logGammaCacheX) {
 
-             return self::$logGammaCacheResult;
 
-         }
 
-         $y = $x;
 
-         if ($y > 0.0 && $y <= self::LOG_GAMMA_X_MAX_VALUE) {
 
-             if ($y <= self::EPS) {
 
-                 $res = -log($y);
 
-             } elseif ($y <= 1.5) {
 
-                 // ---------------------
 
-                 //    EPS .LT. X .LE. 1.5
 
-                 // ---------------------
 
-                 if ($y < $pnt68) {
 
-                     $corr = -log($y);
 
-                     $xm1 = $y;
 
-                 } else {
 
-                     $corr = 0.0;
 
-                     $xm1 = $y - 1.0;
 
-                 }
 
-                 if ($y <= 0.5 || $y >= $pnt68) {
 
-                     $xden = 1.0;
 
-                     $xnum = 0.0;
 
-                     for ($i = 0; $i < 8; ++$i) {
 
-                         $xnum = $xnum * $xm1 + $lg_p1[$i];
 
-                         $xden = $xden * $xm1 + $lg_q1[$i];
 
-                     }
 
-                     $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));
 
-                 } else {
 
-                     $xm2 = $y - 1.0;
 
-                     $xden = 1.0;
 
-                     $xnum = 0.0;
 
-                     for ($i = 0; $i < 8; ++$i) {
 
-                         $xnum = $xnum * $xm2 + $lg_p2[$i];
 
-                         $xden = $xden * $xm2 + $lg_q2[$i];
 
-                     }
 
-                     $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
 
-                 }
 
-             } elseif ($y <= 4.0) {
 
-                 // ---------------------
 
-                 //    1.5 .LT. X .LE. 4.0
 
-                 // ---------------------
 
-                 $xm2 = $y - 2.0;
 
-                 $xden = 1.0;
 
-                 $xnum = 0.0;
 
-                 for ($i = 0; $i < 8; ++$i) {
 
-                     $xnum = $xnum * $xm2 + $lg_p2[$i];
 
-                     $xden = $xden * $xm2 + $lg_q2[$i];
 
-                 }
 
-                 $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
 
-             } elseif ($y <= 12.0) {
 
-                 // ----------------------
 
-                 //    4.0 .LT. X .LE. 12.0
 
-                 // ----------------------
 
-                 $xm4 = $y - 4.0;
 
-                 $xden = -1.0;
 
-                 $xnum = 0.0;
 
-                 for ($i = 0; $i < 8; ++$i) {
 
-                     $xnum = $xnum * $xm4 + $lg_p4[$i];
 
-                     $xden = $xden * $xm4 + $lg_q4[$i];
 
-                 }
 
-                 $res = $lg_d4 + $xm4 * ($xnum / $xden);
 
-             } else {
 
-                 // ---------------------------------
 
-                 //    Evaluate for argument .GE. 12.0
 
-                 // ---------------------------------
 
-                 $res = 0.0;
 
-                 if ($y <= $lg_frtbig) {
 
-                     $res = $lg_c[6];
 
-                     $ysq = $y * $y;
 
-                     for ($i = 0; $i < 6; ++$i) {
 
-                         $res = $res / $ysq + $lg_c[$i];
 
-                     }
 
-                     $res /= $y;
 
-                     $corr = log($y);
 
-                     $res = $res + log(self::SQRT2PI) - 0.5 * $corr;
 
-                     $res += $y * ($corr - 1.0);
 
-                 }
 
-             }
 
-         } else {
 
-             // --------------------------
 
-             //    Return for bad arguments
 
-             // --------------------------
 
-             $res = self::MAX_VALUE;
 
-         }
 
-         // ------------------------------
 
-         //    Final adjustments and return
 
-         // ------------------------------
 
-         self::$logGammaCacheX = $x;
 
-         self::$logGammaCacheResult = $res;
 
-         return $res;
 
-     }
 
-     //
 
-     //    Private implementation of the incomplete Gamma function
 
-     //
 
-     private static function incompleteGamma($a, $x)
 
-     {
 
-         static $max = 32;
 
-         $summer = 0;
 
-         for ($n = 0; $n <= $max; ++$n) {
 
-             $divisor = $a;
 
-             for ($i = 1; $i <= $n; ++$i) {
 
-                 $divisor *= ($a + $i);
 
-             }
 
-             $summer += (pow($x, $n) / $divisor);
 
-         }
 
-         return pow($x, $a) * exp(0 - $x) * $summer;
 
-     }
 
-     //
 
-     //    Private implementation of the Gamma function
 
-     //
 
-     private static function gamma($data)
 
-     {
 
-         if ($data == 0.0) {
 
-             return 0;
 
-         }
 
-         static $p0 = 1.000000000190015;
 
-         static $p = [
 
-             1 => 76.18009172947146,
 
-             2 => -86.50532032941677,
 
-             3 => 24.01409824083091,
 
-             4 => -1.231739572450155,
 
-             5 => 1.208650973866179e-3,
 
-             6 => -5.395239384953e-6,
 
-         ];
 
-         $y = $x = $data;
 
-         $tmp = $x + 5.5;
 
-         $tmp -= ($x + 0.5) * log($tmp);
 
-         $summer = $p0;
 
-         for ($j = 1; $j <= 6; ++$j) {
 
-             $summer += ($p[$j] / ++$y);
 
-         }
 
-         return exp(0 - $tmp + log(self::SQRT2PI * $summer / $x));
 
-     }
 
-     /*
 
-      *                                inverse_ncdf.php
 
-      *                            -------------------
 
-      *    begin                : Friday, January 16, 2004
 
-      *    copyright            : (C) 2004 Michael Nickerson
 
-      *    email                : nickersonm@yahoo.com
 
-      *
 
-      */
 
-     private static function inverseNcdf($p)
 
-     {
 
-         //    Inverse ncdf approximation by Peter J. Acklam, implementation adapted to
 
-         //    PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as
 
-         //    a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html
 
-         //    I have not checked the accuracy of this implementation. Be aware that PHP
 
-         //    will truncate the coeficcients to 14 digits.
 
-         //    You have permission to use and distribute this function freely for
 
-         //    whatever purpose you want, but please show common courtesy and give credit
 
-         //    where credit is due.
 
-         //    Input paramater is $p - probability - where 0 < p < 1.
 
-         //    Coefficients in rational approximations
 
-         static $a = [
 
-             1 => -3.969683028665376e+01,
 
-             2 => 2.209460984245205e+02,
 
-             3 => -2.759285104469687e+02,
 
-             4 => 1.383577518672690e+02,
 
-             5 => -3.066479806614716e+01,
 
-             6 => 2.506628277459239e+00,
 
-         ];
 
-         static $b = [
 
-             1 => -5.447609879822406e+01,
 
-             2 => 1.615858368580409e+02,
 
-             3 => -1.556989798598866e+02,
 
-             4 => 6.680131188771972e+01,
 
-             5 => -1.328068155288572e+01,
 
-         ];
 
-         static $c = [
 
-             1 => -7.784894002430293e-03,
 
-             2 => -3.223964580411365e-01,
 
-             3 => -2.400758277161838e+00,
 
-             4 => -2.549732539343734e+00,
 
-             5 => 4.374664141464968e+00,
 
-             6 => 2.938163982698783e+00,
 
-         ];
 
-         static $d = [
 
-             1 => 7.784695709041462e-03,
 
-             2 => 3.224671290700398e-01,
 
-             3 => 2.445134137142996e+00,
 
-             4 => 3.754408661907416e+00,
 
-         ];
 
-         //    Define lower and upper region break-points.
 
-         $p_low = 0.02425; //Use lower region approx. below this
 
-         $p_high = 1 - $p_low; //Use upper region approx. above this
 
-         if (0 < $p && $p < $p_low) {
 
-             //    Rational approximation for lower region.
 
-             $q = sqrt(-2 * log($p));
 
-             return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
 
-                     (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
 
-         } elseif ($p_low <= $p && $p <= $p_high) {
 
-             //    Rational approximation for central region.
 
-             $q = $p - 0.5;
 
-             $r = $q * $q;
 
-             return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /
 
-                    ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);
 
-         } elseif ($p_high < $p && $p < 1) {
 
-             //    Rational approximation for upper region.
 
-             $q = sqrt(-2 * log(1 - $p));
 
-             return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
 
-                      (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
 
-         }
 
-         //    If 0 < p < 1, return a null value
 
-         return Functions::NULL();
 
-     }
 
-     /**
 
-      * AVEDEV.
 
-      *
 
-      * Returns the average of the absolute deviations of data points from their mean.
 
-      * AVEDEV is a measure of the variability in a data set.
 
-      *
 
-      * Excel Function:
 
-      *        AVEDEV(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function AVEDEV(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         // Return value
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGE($aArgs);
 
-         if ($aMean != Functions::DIV0()) {
 
-             $aCount = 0;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                     $arg = (int) $arg;
 
-                 }
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     if ($returnValue === null) {
 
-                         $returnValue = abs($arg - $aMean);
 
-                     } else {
 
-                         $returnValue += abs($arg - $aMean);
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-             // Return
 
-             if ($aCount == 0) {
 
-                 return Functions::DIV0();
 
-             }
 
-             return $returnValue / $aCount;
 
-         }
 
-         return Functions::NAN();
 
-     }
 
-     /**
 
-      * AVERAGE.
 
-      *
 
-      * Returns the average (arithmetic mean) of the arguments
 
-      *
 
-      * Excel Function:
 
-      *        AVERAGE(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function AVERAGE(...$args)
 
-     {
 
-         $returnValue = $aCount = 0;
 
-         // Loop through arguments
 
-         foreach (Functions::flattenArrayIndexed($args) as $k => $arg) {
 
-             if ((is_bool($arg)) &&
 
-                 ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                 $arg = (int) $arg;
 
-             }
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 if ($returnValue === null) {
 
-                     $returnValue = $arg;
 
-                 } else {
 
-                     $returnValue += $arg;
 
-                 }
 
-                 ++$aCount;
 
-             }
 
-         }
 
-         // Return
 
-         if ($aCount > 0) {
 
-             return $returnValue / $aCount;
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * AVERAGEA.
 
-      *
 
-      * Returns the average of its arguments, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        AVERAGEA(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function AVERAGEA(...$args)
 
-     {
 
-         $returnValue = null;
 
-         $aCount = 0;
 
-         // Loop through arguments
 
-         foreach (Functions::flattenArrayIndexed($args) as $k => $arg) {
 
-             if ((is_bool($arg)) &&
 
-                 (!Functions::isMatrixValue($k))) {
 
-             } else {
 
-                 if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 
-                     if (is_bool($arg)) {
 
-                         $arg = (int) $arg;
 
-                     } elseif (is_string($arg)) {
 
-                         $arg = 0;
 
-                     }
 
-                     if ($returnValue === null) {
 
-                         $returnValue = $arg;
 
-                     } else {
 
-                         $returnValue += $arg;
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-         }
 
-         if ($aCount > 0) {
 
-             return $returnValue / $aCount;
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * AVERAGEIF.
 
-      *
 
-      * Returns the average value from a range of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        AVERAGEIF(value1[,value2[, ...]],condition)
 
-      *
 
-      * @category Mathematical and Trigonometric Functions
 
-      *
 
-      * @param mixed $aArgs Data values
 
-      * @param string $condition the criteria that defines which cells will be checked
 
-      * @param mixed[] $averageArgs Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function AVERAGEIF($aArgs, $condition, $averageArgs = [])
 
-     {
 
-         $returnValue = 0;
 
-         $aArgs = Functions::flattenArray($aArgs);
 
-         $averageArgs = Functions::flattenArray($averageArgs);
 
-         if (empty($averageArgs)) {
 
-             $averageArgs = $aArgs;
 
-         }
 
-         $condition = Functions::ifCondition($condition);
 
-         // Loop through arguments
 
-         $aCount = 0;
 
-         foreach ($aArgs as $key => $arg) {
 
-             if (!is_numeric($arg)) {
 
-                 $arg = Calculation::wrapResult(strtoupper($arg));
 
-             }
 
-             $testCondition = '=' . $arg . $condition;
 
-             if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 
-                 if (($returnValue === null) || ($arg > $returnValue)) {
 
-                     $returnValue += $arg;
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-         }
 
-         if ($aCount > 0) {
 
-             return $returnValue / $aCount;
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * BETADIST.
 
-      *
 
-      * Returns the beta distribution.
 
-      *
 
-      * @param float $value Value at which you want to evaluate the distribution
 
-      * @param float $alpha Parameter to the distribution
 
-      * @param float $beta Parameter to the distribution
 
-      * @param mixed $rMin
 
-      * @param mixed $rMax
 
-      *
 
-      * @return float
 
-      */
 
-     public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $alpha = Functions::flattenSingleValue($alpha);
 
-         $beta = Functions::flattenSingleValue($beta);
 
-         $rMin = Functions::flattenSingleValue($rMin);
 
-         $rMax = Functions::flattenSingleValue($rMax);
 
-         if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
 
-             if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ($rMin > $rMax) {
 
-                 $tmp = $rMin;
 
-                 $rMin = $rMax;
 
-                 $rMax = $tmp;
 
-             }
 
-             $value -= $rMin;
 
-             $value /= ($rMax - $rMin);
 
-             return self::incompleteBeta($value, $alpha, $beta);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * BETAINV.
 
-      *
 
-      * Returns the inverse of the beta distribution.
 
-      *
 
-      * @param float $probability Probability at which you want to evaluate the distribution
 
-      * @param float $alpha Parameter to the distribution
 
-      * @param float $beta Parameter to the distribution
 
-      * @param float $rMin Minimum value
 
-      * @param float $rMax Maximum value
 
-      *
 
-      * @return float
 
-      */
 
-     public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1)
 
-     {
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         $alpha = Functions::flattenSingleValue($alpha);
 
-         $beta = Functions::flattenSingleValue($beta);
 
-         $rMin = Functions::flattenSingleValue($rMin);
 
-         $rMax = Functions::flattenSingleValue($rMax);
 
-         if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
 
-             if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ($rMin > $rMax) {
 
-                 $tmp = $rMin;
 
-                 $rMin = $rMax;
 
-                 $rMax = $tmp;
 
-             }
 
-             $a = 0;
 
-             $b = 2;
 
-             $i = 0;
 
-             while ((($b - $a) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {
 
-                 $guess = ($a + $b) / 2;
 
-                 $result = self::BETADIST($guess, $alpha, $beta);
 
-                 if (($result == $probability) || ($result == 0)) {
 
-                     $b = $a;
 
-                 } elseif ($result > $probability) {
 
-                     $b = $guess;
 
-                 } else {
 
-                     $a = $guess;
 
-                 }
 
-             }
 
-             if ($i == self::MAX_ITERATIONS) {
 
-                 return Functions::NA();
 
-             }
 
-             return round($rMin + $guess * ($rMax - $rMin), 12);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * BINOMDIST.
 
-      *
 
-      * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with
 
-      *        a fixed number of tests or trials, when the outcomes of any trial are only success or failure,
 
-      *        when trials are independent, and when the probability of success is constant throughout the
 
-      *        experiment. For example, BINOMDIST can calculate the probability that two of the next three
 
-      *        babies born are male.
 
-      *
 
-      * @param float $value Number of successes in trials
 
-      * @param float $trials Number of trials
 
-      * @param float $probability Probability of success on each trial
 
-      * @param bool $cumulative
 
-      *
 
-      * @return float
 
-      *
 
-      * @todo    Cumulative distribution function
 
-      */
 
-     public static function BINOMDIST($value, $trials, $probability, $cumulative)
 
-     {
 
-         $value = floor(Functions::flattenSingleValue($value));
 
-         $trials = floor(Functions::flattenSingleValue($trials));
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {
 
-             if (($value < 0) || ($value > $trials)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if (($probability < 0) || ($probability > 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     $summer = 0;
 
-                     for ($i = 0; $i <= $value; ++$i) {
 
-                         $summer += MathTrig::COMBIN($trials, $i) * pow($probability, $i) * pow(1 - $probability, $trials - $i);
 
-                     }
 
-                     return $summer;
 
-                 }
 
-                 return MathTrig::COMBIN($trials, $value) * pow($probability, $value) * pow(1 - $probability, $trials - $value);
 
-             }
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * CHIDIST.
 
-      *
 
-      * Returns the one-tailed probability of the chi-squared distribution.
 
-      *
 
-      * @param float $value Value for the function
 
-      * @param float $degrees degrees of freedom
 
-      *
 
-      * @return float
 
-      */
 
-     public static function CHIDIST($value, $degrees)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $degrees = floor(Functions::flattenSingleValue($degrees));
 
-         if ((is_numeric($value)) && (is_numeric($degrees))) {
 
-             if ($degrees < 1) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ($value < 0) {
 
-                 if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) {
 
-                     return 1;
 
-                 }
 
-                 return Functions::NAN();
 
-             }
 
-             return 1 - (self::incompleteGamma($degrees / 2, $value / 2) / self::gamma($degrees / 2));
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * CHIINV.
 
-      *
 
-      * Returns the one-tailed probability of the chi-squared distribution.
 
-      *
 
-      * @param float $probability Probability for the function
 
-      * @param float $degrees degrees of freedom
 
-      *
 
-      * @return float
 
-      */
 
-     public static function CHIINV($probability, $degrees)
 
-     {
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         $degrees = floor(Functions::flattenSingleValue($degrees));
 
-         if ((is_numeric($probability)) && (is_numeric($degrees))) {
 
-             $xLo = 100;
 
-             $xHi = 0;
 
-             $x = $xNew = 1;
 
-             $dx = 1;
 
-             $i = 0;
 
-             while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {
 
-                 // Apply Newton-Raphson step
 
-                 $result = self::CHIDIST($x, $degrees);
 
-                 $error = $result - $probability;
 
-                 if ($error == 0.0) {
 
-                     $dx = 0;
 
-                 } elseif ($error < 0.0) {
 
-                     $xLo = $x;
 
-                 } else {
 
-                     $xHi = $x;
 
-                 }
 
-                 // Avoid division by zero
 
-                 if ($result != 0.0) {
 
-                     $dx = $error / $result;
 
-                     $xNew = $x - $dx;
 
-                 }
 
-                 // If the NR fails to converge (which for example may be the
 
-                 // case if the initial guess is too rough) we apply a bisection
 
-                 // step to determine a more narrow interval around the root.
 
-                 if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
 
-                     $xNew = ($xLo + $xHi) / 2;
 
-                     $dx = $xNew - $x;
 
-                 }
 
-                 $x = $xNew;
 
-             }
 
-             if ($i == self::MAX_ITERATIONS) {
 
-                 return Functions::NA();
 
-             }
 
-             return round($x, 12);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * CONFIDENCE.
 
-      *
 
-      * Returns the confidence interval for a population mean
 
-      *
 
-      * @param float $alpha
 
-      * @param float $stdDev Standard Deviation
 
-      * @param float $size
 
-      *
 
-      * @return float
 
-      */
 
-     public static function CONFIDENCE($alpha, $stdDev, $size)
 
-     {
 
-         $alpha = Functions::flattenSingleValue($alpha);
 
-         $stdDev = Functions::flattenSingleValue($stdDev);
 
-         $size = floor(Functions::flattenSingleValue($size));
 
-         if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {
 
-             if (($alpha <= 0) || ($alpha >= 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if (($stdDev <= 0) || ($size < 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * CORREL.
 
-      *
 
-      * Returns covariance, the average of the products of deviations for each data point pair.
 
-      *
 
-      * @param mixed $yValues array of mixed Data Series Y
 
-      * @param null|mixed $xValues array of mixed Data Series X
 
-      *
 
-      * @return float
 
-      */
 
-     public static function CORREL($yValues, $xValues = null)
 
-     {
 
-         if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) {
 
-             return Functions::VALUE();
 
-         }
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return Functions::DIV0();
 
-         }
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getCorrelation();
 
-     }
 
-     /**
 
-      * COUNT.
 
-      *
 
-      * Counts the number of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        COUNT(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return int
 
-      */
 
-     public static function COUNT(...$args)
 
-     {
 
-         $returnValue = 0;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         foreach ($aArgs as $k => $arg) {
 
-             if ((is_bool($arg)) &&
 
-                 ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                 $arg = (int) $arg;
 
-             }
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 ++$returnValue;
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * COUNTA.
 
-      *
 
-      * Counts the number of cells that are not empty within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        COUNTA(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return int
 
-      */
 
-     public static function COUNTA(...$args)
 
-     {
 
-         $returnValue = 0;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric, boolean or string value?
 
-             if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 
-                 ++$returnValue;
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * COUNTBLANK.
 
-      *
 
-      * Counts the number of empty cells within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        COUNTBLANK(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return int
 
-      */
 
-     public static function COUNTBLANK(...$args)
 
-     {
 
-         $returnValue = 0;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a blank cell?
 
-             if (($arg === null) || ((is_string($arg)) && ($arg == ''))) {
 
-                 ++$returnValue;
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * COUNTIF.
 
-      *
 
-      * Counts the number of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        COUNTIF(value1[,value2[, ...]],condition)
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed $aArgs Data values
 
-      * @param string $condition the criteria that defines which cells will be counted
 
-      *
 
-      * @return int
 
-      */
 
-     public static function COUNTIF($aArgs, $condition)
 
-     {
 
-         $returnValue = 0;
 
-         $aArgs = Functions::flattenArray($aArgs);
 
-         $condition = Functions::ifCondition($condition);
 
-         // Loop through arguments
 
-         foreach ($aArgs as $arg) {
 
-             if (!is_numeric($arg)) {
 
-                 $arg = Calculation::wrapResult(strtoupper($arg));
 
-             }
 
-             $testCondition = '=' . $arg . $condition;
 
-             if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 
-                 // Is it a value within our criteria
 
-                 ++$returnValue;
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * COVAR.
 
-      *
 
-      * Returns covariance, the average of the products of deviations for each data point pair.
 
-      *
 
-      * @param mixed $yValues array of mixed Data Series Y
 
-      * @param mixed $xValues array of mixed Data Series X
 
-      *
 
-      * @return float
 
-      */
 
-     public static function COVAR($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return Functions::DIV0();
 
-         }
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getCovariance();
 
-     }
 
-     /**
 
-      * CRITBINOM.
 
-      *
 
-      * Returns the smallest value for which the cumulative binomial distribution is greater
 
-      *        than or equal to a criterion value
 
-      *
 
-      * See https://support.microsoft.com/en-us/help/828117/ for details of the algorithm used
 
-      *
 
-      * @param float $trials number of Bernoulli trials
 
-      * @param float $probability probability of a success on each trial
 
-      * @param float $alpha criterion value
 
-      *
 
-      * @return int
 
-      *
 
-      * @todo    Warning. This implementation differs from the algorithm detailed on the MS
 
-      *            web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess
 
-      *            This eliminates a potential endless loop error, but may have an adverse affect on the
 
-      *            accuracy of the function (although all my tests have so far returned correct results).
 
-      */
 
-     public static function CRITBINOM($trials, $probability, $alpha)
 
-     {
 
-         $trials = floor(Functions::flattenSingleValue($trials));
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         $alpha = Functions::flattenSingleValue($alpha);
 
-         if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {
 
-             if ($trials < 0) {
 
-                 return Functions::NAN();
 
-             } elseif (($probability < 0) || ($probability > 1)) {
 
-                 return Functions::NAN();
 
-             } elseif (($alpha < 0) || ($alpha > 1)) {
 
-                 return Functions::NAN();
 
-             } elseif ($alpha <= 0.5) {
 
-                 $t = sqrt(log(1 / ($alpha * $alpha)));
 
-                 $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));
 
-             } else {
 
-                 $t = sqrt(log(1 / pow(1 - $alpha, 2)));
 
-                 $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);
 
-             }
 
-             $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));
 
-             if ($Guess < 0) {
 
-                 $Guess = 0;
 
-             } elseif ($Guess > $trials) {
 
-                 $Guess = $trials;
 
-             }
 
-             $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;
 
-             $EssentiallyZero = 10e-12;
 
-             $m = floor($trials * $probability);
 
-             ++$TotalUnscaledProbability;
 
-             if ($m == $Guess) {
 
-                 ++$UnscaledPGuess;
 
-             }
 
-             if ($m <= $Guess) {
 
-                 ++$UnscaledCumPGuess;
 
-             }
 
-             $PreviousValue = 1;
 
-             $Done = false;
 
-             $k = $m + 1;
 
-             while ((!$Done) && ($k <= $trials)) {
 
-                 $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));
 
-                 $TotalUnscaledProbability += $CurrentValue;
 
-                 if ($k == $Guess) {
 
-                     $UnscaledPGuess += $CurrentValue;
 
-                 }
 
-                 if ($k <= $Guess) {
 
-                     $UnscaledCumPGuess += $CurrentValue;
 
-                 }
 
-                 if ($CurrentValue <= $EssentiallyZero) {
 
-                     $Done = true;
 
-                 }
 
-                 $PreviousValue = $CurrentValue;
 
-                 ++$k;
 
-             }
 
-             $PreviousValue = 1;
 
-             $Done = false;
 
-             $k = $m - 1;
 
-             while ((!$Done) && ($k >= 0)) {
 
-                 $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);
 
-                 $TotalUnscaledProbability += $CurrentValue;
 
-                 if ($k == $Guess) {
 
-                     $UnscaledPGuess += $CurrentValue;
 
-                 }
 
-                 if ($k <= $Guess) {
 
-                     $UnscaledCumPGuess += $CurrentValue;
 
-                 }
 
-                 if ($CurrentValue <= $EssentiallyZero) {
 
-                     $Done = true;
 
-                 }
 
-                 $PreviousValue = $CurrentValue;
 
-                 --$k;
 
-             }
 
-             $PGuess = $UnscaledPGuess / $TotalUnscaledProbability;
 
-             $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;
 
-             $CumPGuessMinus1 = $CumPGuess - 1;
 
-             while (true) {
 
-                 if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {
 
-                     return $Guess;
 
-                 } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {
 
-                     $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);
 
-                     $CumPGuessMinus1 = $CumPGuess;
 
-                     $CumPGuess = $CumPGuess + $PGuessPlus1;
 
-                     $PGuess = $PGuessPlus1;
 
-                     ++$Guess;
 
-                 } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {
 
-                     $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;
 
-                     $CumPGuess = $CumPGuessMinus1;
 
-                     $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;
 
-                     $PGuess = $PGuessMinus1;
 
-                     --$Guess;
 
-                 }
 
-             }
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * DEVSQ.
 
-      *
 
-      * Returns the sum of squares of deviations of data points from their sample mean.
 
-      *
 
-      * Excel Function:
 
-      *        DEVSQ(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function DEVSQ(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         // Return value
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGE($aArgs);
 
-         if ($aMean != Functions::DIV0()) {
 
-             $aCount = -1;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_bool($arg)) &&
 
-                     ((!Functions::isCellValue($k)) ||
 
-                     (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                     $arg = (int) $arg;
 
-                 }
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     if ($returnValue === null) {
 
-                         $returnValue = pow(($arg - $aMean), 2);
 
-                     } else {
 
-                         $returnValue += pow(($arg - $aMean), 2);
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-             // Return
 
-             if ($returnValue === null) {
 
-                 return Functions::NAN();
 
-             }
 
-             return $returnValue;
 
-         }
 
-         return self::NA();
 
-     }
 
-     /**
 
-      * EXPONDIST.
 
-      *
 
-      *    Returns the exponential distribution. Use EXPONDIST to model the time between events,
 
-      *        such as how long an automated bank teller takes to deliver cash. For example, you can
 
-      *        use EXPONDIST to determine the probability that the process takes at most 1 minute.
 
-      *
 
-      * @param float $value Value of the function
 
-      * @param float $lambda The parameter value
 
-      * @param bool $cumulative
 
-      *
 
-      * @return float
 
-      */
 
-     public static function EXPONDIST($value, $lambda, $cumulative)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $lambda = Functions::flattenSingleValue($lambda);
 
-         $cumulative = Functions::flattenSingleValue($cumulative);
 
-         if ((is_numeric($value)) && (is_numeric($lambda))) {
 
-             if (($value < 0) || ($lambda < 0)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     return 1 - exp(0 - $value * $lambda);
 
-                 }
 
-                 return $lambda * exp(0 - $value * $lambda);
 
-             }
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * FISHER.
 
-      *
 
-      * Returns the Fisher transformation at x. This transformation produces a function that
 
-      *        is normally distributed rather than skewed. Use this function to perform hypothesis
 
-      *        testing on the correlation coefficient.
 
-      *
 
-      * @param float $value
 
-      *
 
-      * @return float
 
-      */
 
-     public static function FISHER($value)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         if (is_numeric($value)) {
 
-             if (($value <= -1) || ($value >= 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             return 0.5 * log((1 + $value) / (1 - $value));
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * FISHERINV.
 
-      *
 
-      * Returns the inverse of the Fisher transformation. Use this transformation when
 
-      *        analyzing correlations between ranges or arrays of data. If y = FISHER(x), then
 
-      *        FISHERINV(y) = x.
 
-      *
 
-      * @param float $value
 
-      *
 
-      * @return float
 
-      */
 
-     public static function FISHERINV($value)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         if (is_numeric($value)) {
 
-             return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * FORECAST.
 
-      *
 
-      * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.
 
-      *
 
-      * @param float $xValue Value of X for which we want to find Y
 
-      * @param mixed $yValues array of mixed Data Series Y
 
-      * @param mixed $xValues of mixed Data Series X
 
-      *
 
-      * @return float
 
-      */
 
-     public static function FORECAST($xValue, $yValues, $xValues)
 
-     {
 
-         $xValue = Functions::flattenSingleValue($xValue);
 
-         if (!is_numeric($xValue)) {
 
-             return Functions::VALUE();
 
-         } elseif (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return Functions::DIV0();
 
-         }
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getValueOfYForX($xValue);
 
-     }
 
-     /**
 
-      * GAMMADIST.
 
-      *
 
-      * Returns the gamma distribution.
 
-      *
 
-      * @param float $value Value at which you want to evaluate the distribution
 
-      * @param float $a Parameter to the distribution
 
-      * @param float $b Parameter to the distribution
 
-      * @param bool $cumulative
 
-      *
 
-      * @return float
 
-      */
 
-     public static function GAMMADIST($value, $a, $b, $cumulative)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $a = Functions::flattenSingleValue($a);
 
-         $b = Functions::flattenSingleValue($b);
 
-         if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {
 
-             if (($value < 0) || ($a <= 0) || ($b <= 0)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     return self::incompleteGamma($a, $value / $b) / self::gamma($a);
 
-                 }
 
-                 return (1 / (pow($b, $a) * self::gamma($a))) * pow($value, $a - 1) * exp(0 - ($value / $b));
 
-             }
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * GAMMAINV.
 
-      *
 
-      * Returns the inverse of the beta distribution.
 
-      *
 
-      * @param float $probability Probability at which you want to evaluate the distribution
 
-      * @param float $alpha Parameter to the distribution
 
-      * @param float $beta Parameter to the distribution
 
-      *
 
-      * @return float
 
-      */
 
-     public static function GAMMAINV($probability, $alpha, $beta)
 
-     {
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         $alpha = Functions::flattenSingleValue($alpha);
 
-         $beta = Functions::flattenSingleValue($beta);
 
-         if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {
 
-             if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             $xLo = 0;
 
-             $xHi = $alpha * $beta * 5;
 
-             $x = $xNew = 1;
 
-             $error = $pdf = 0;
 
-             $dx = 1024;
 
-             $i = 0;
 
-             while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {
 
-                 // Apply Newton-Raphson step
 
-                 $error = self::GAMMADIST($x, $alpha, $beta, true) - $probability;
 
-                 if ($error < 0.0) {
 
-                     $xLo = $x;
 
-                 } else {
 
-                     $xHi = $x;
 
-                 }
 
-                 $pdf = self::GAMMADIST($x, $alpha, $beta, false);
 
-                 // Avoid division by zero
 
-                 if ($pdf != 0.0) {
 
-                     $dx = $error / $pdf;
 
-                     $xNew = $x - $dx;
 
-                 }
 
-                 // If the NR fails to converge (which for example may be the
 
-                 // case if the initial guess is too rough) we apply a bisection
 
-                 // step to determine a more narrow interval around the root.
 
-                 if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {
 
-                     $xNew = ($xLo + $xHi) / 2;
 
-                     $dx = $xNew - $x;
 
-                 }
 
-                 $x = $xNew;
 
-             }
 
-             if ($i == self::MAX_ITERATIONS) {
 
-                 return Functions::NA();
 
-             }
 
-             return $x;
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * GAMMALN.
 
-      *
 
-      * Returns the natural logarithm of the gamma function.
 
-      *
 
-      * @param float $value
 
-      *
 
-      * @return float
 
-      */
 
-     public static function GAMMALN($value)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         if (is_numeric($value)) {
 
-             if ($value <= 0) {
 
-                 return Functions::NAN();
 
-             }
 
-             return log(self::gamma($value));
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * GEOMEAN.
 
-      *
 
-      * Returns the geometric mean of an array or range of positive data. For example, you
 
-      *        can use GEOMEAN to calculate average growth rate given compound interest with
 
-      *        variable rates.
 
-      *
 
-      * Excel Function:
 
-      *        GEOMEAN(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function GEOMEAN(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArray($args);
 
-         $aMean = MathTrig::PRODUCT($aArgs);
 
-         if (is_numeric($aMean) && ($aMean > 0)) {
 
-             $aCount = self::COUNT($aArgs);
 
-             if (self::MIN($aArgs) > 0) {
 
-                 return pow($aMean, (1 / $aCount));
 
-             }
 
-         }
 
-         return Functions::NAN();
 
-     }
 
-     /**
 
-      * GROWTH.
 
-      *
 
-      * Returns values along a predicted emponential Trend
 
-      *
 
-      * @param mixed[] $yValues Data Series Y
 
-      * @param mixed[] $xValues Data Series X
 
-      * @param mixed[] $newValues Values of X for which we want to find Y
 
-      * @param bool $const a logical value specifying whether to force the intersect to equal 0
 
-      *
 
-      * @return array of float
 
-      */
 
-     public static function GROWTH($yValues, $xValues = [], $newValues = [], $const = true)
 
-     {
 
-         $yValues = Functions::flattenArray($yValues);
 
-         $xValues = Functions::flattenArray($xValues);
 
-         $newValues = Functions::flattenArray($newValues);
 
-         $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
 
-         $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
 
-         if (empty($newValues)) {
 
-             $newValues = $bestFitExponential->getXValues();
 
-         }
 
-         $returnArray = [];
 
-         foreach ($newValues as $xValue) {
 
-             $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);
 
-         }
 
-         return $returnArray;
 
-     }
 
-     /**
 
-      * HARMEAN.
 
-      *
 
-      * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the
 
-      *        arithmetic mean of reciprocals.
 
-      *
 
-      * Excel Function:
 
-      *        HARMEAN(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function HARMEAN(...$args)
 
-     {
 
-         // Return value
 
-         $returnValue = Functions::NA();
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         if (self::MIN($aArgs) < 0) {
 
-             return Functions::NAN();
 
-         }
 
-         $aCount = 0;
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 if ($arg <= 0) {
 
-                     return Functions::NAN();
 
-                 }
 
-                 if ($returnValue === null) {
 
-                     $returnValue = (1 / $arg);
 
-                 } else {
 
-                     $returnValue += (1 / $arg);
 
-                 }
 
-                 ++$aCount;
 
-             }
 
-         }
 
-         // Return
 
-         if ($aCount > 0) {
 
-             return 1 / ($returnValue / $aCount);
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * HYPGEOMDIST.
 
-      *
 
-      * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of
 
-      * sample successes, given the sample size, population successes, and population size.
 
-      *
 
-      * @param float $sampleSuccesses Number of successes in the sample
 
-      * @param float $sampleNumber Size of the sample
 
-      * @param float $populationSuccesses Number of successes in the population
 
-      * @param float $populationNumber Population size
 
-      *
 
-      * @return float
 
-      */
 
-     public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber)
 
-     {
 
-         $sampleSuccesses = floor(Functions::flattenSingleValue($sampleSuccesses));
 
-         $sampleNumber = floor(Functions::flattenSingleValue($sampleNumber));
 
-         $populationSuccesses = floor(Functions::flattenSingleValue($populationSuccesses));
 
-         $populationNumber = floor(Functions::flattenSingleValue($populationNumber));
 
-         if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {
 
-             if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {
 
-                 return Functions::NAN();
 
-             }
 
-             return MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) *
 
-                    MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) /
 
-                    MathTrig::COMBIN($populationNumber, $sampleNumber);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * INTERCEPT.
 
-      *
 
-      * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
 
-      *
 
-      * @param mixed[] $yValues Data Series Y
 
-      * @param mixed[] $xValues Data Series X
 
-      *
 
-      * @return float
 
-      */
 
-     public static function INTERCEPT($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return Functions::DIV0();
 
-         }
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getIntersect();
 
-     }
 
-     /**
 
-      * KURT.
 
-      *
 
-      * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness
 
-      * or flatness of a distribution compared with the normal distribution. Positive
 
-      * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a
 
-      * relatively flat distribution.
 
-      *
 
-      * @param array ...$args Data Series
 
-      *
 
-      * @return float
 
-      */
 
-     public static function KURT(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         $mean = self::AVERAGE($aArgs);
 
-         $stdDev = self::STDEV($aArgs);
 
-         if ($stdDev > 0) {
 
-             $count = $summer = 0;
 
-             // Loop through arguments
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     (!Functions::isMatrixValue($k))) {
 
-                 } else {
 
-                     // Is it a numeric value?
 
-                     if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                         $summer += pow((($arg - $mean) / $stdDev), 4);
 
-                         ++$count;
 
-                     }
 
-                 }
 
-             }
 
-             // Return
 
-             if ($count > 3) {
 
-                 return $summer * ($count * ($count + 1) / (($count - 1) * ($count - 2) * ($count - 3))) - (3 * pow($count - 1, 2) / (($count - 2) * ($count - 3)));
 
-             }
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * LARGE.
 
-      *
 
-      * Returns the nth largest value in a data set. You can use this function to
 
-      *        select a value based on its relative standing.
 
-      *
 
-      * Excel Function:
 
-      *        LARGE(value1[,value2[, ...]],entry)
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed $args Data values
 
-      * @param int $entry Position (ordered from the largest) in the array or range of data to return
 
-      *
 
-      * @return float
 
-      */
 
-     public static function LARGE(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArray($args);
 
-         // Calculate
 
-         $entry = floor(array_pop($aArgs));
 
-         if ((is_numeric($entry)) && (!is_string($entry))) {
 
-             $mArgs = [];
 
-             foreach ($aArgs as $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $mArgs[] = $arg;
 
-                 }
 
-             }
 
-             $count = self::COUNT($mArgs);
 
-             $entry = floor(--$entry);
 
-             if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
 
-                 return Functions::NAN();
 
-             }
 
-             rsort($mArgs);
 
-             return $mArgs[$entry];
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * LINEST.
 
-      *
 
-      * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,
 
-      *        and then returns an array that describes the line.
 
-      *
 
-      * @param mixed[] $yValues Data Series Y
 
-      * @param null|mixed[] $xValues Data Series X
 
-      * @param bool $const a logical value specifying whether to force the intersect to equal 0
 
-      * @param bool $stats a logical value specifying whether to return additional regression statistics
 
-      *
 
-      * @return array
 
-      */
 
-     public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)
 
-     {
 
-         $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
 
-         $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
 
-         if ($xValues === null) {
 
-             $xValues = range(1, count(Functions::flattenArray($yValues)));
 
-         }
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return 0;
 
-         }
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
 
-         if ($stats) {
 
-             return [
 
-                 [
 
-                     $bestFitLinear->getSlope(),
 
-                     $bestFitLinear->getSlopeSE(),
 
-                     $bestFitLinear->getGoodnessOfFit(),
 
-                     $bestFitLinear->getF(),
 
-                     $bestFitLinear->getSSRegression(),
 
-                 ],
 
-                 [
 
-                     $bestFitLinear->getIntersect(),
 
-                     $bestFitLinear->getIntersectSE(),
 
-                     $bestFitLinear->getStdevOfResiduals(),
 
-                     $bestFitLinear->getDFResiduals(),
 
-                     $bestFitLinear->getSSResiduals(),
 
-                 ],
 
-             ];
 
-         }
 
-         return [
 
-                 $bestFitLinear->getSlope(),
 
-                 $bestFitLinear->getIntersect(),
 
-             ];
 
-     }
 
-     /**
 
-      * LOGEST.
 
-      *
 
-      * Calculates an exponential curve that best fits the X and Y data series,
 
-      *        and then returns an array that describes the line.
 
-      *
 
-      * @param mixed[] $yValues Data Series Y
 
-      * @param null|mixed[] $xValues Data Series X
 
-      * @param bool $const a logical value specifying whether to force the intersect to equal 0
 
-      * @param bool $stats a logical value specifying whether to return additional regression statistics
 
-      *
 
-      * @return array
 
-      */
 
-     public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)
 
-     {
 
-         $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
 
-         $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);
 
-         if ($xValues === null) {
 
-             $xValues = range(1, count(Functions::flattenArray($yValues)));
 
-         }
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         foreach ($yValues as $value) {
 
-             if ($value <= 0.0) {
 
-                 return Functions::NAN();
 
-             }
 
-         }
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return 1;
 
-         }
 
-         $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);
 
-         if ($stats) {
 
-             return [
 
-                 [
 
-                     $bestFitExponential->getSlope(),
 
-                     $bestFitExponential->getSlopeSE(),
 
-                     $bestFitExponential->getGoodnessOfFit(),
 
-                     $bestFitExponential->getF(),
 
-                     $bestFitExponential->getSSRegression(),
 
-                 ],
 
-                 [
 
-                     $bestFitExponential->getIntersect(),
 
-                     $bestFitExponential->getIntersectSE(),
 
-                     $bestFitExponential->getStdevOfResiduals(),
 
-                     $bestFitExponential->getDFResiduals(),
 
-                     $bestFitExponential->getSSResiduals(),
 
-                 ],
 
-             ];
 
-         }
 
-         return [
 
-                 $bestFitExponential->getSlope(),
 
-                 $bestFitExponential->getIntersect(),
 
-             ];
 
-     }
 
-     /**
 
-      * LOGINV.
 
-      *
 
-      * Returns the inverse of the normal cumulative distribution
 
-      *
 
-      * @param float $probability
 
-      * @param float $mean
 
-      * @param float $stdDev
 
-      *
 
-      * @return float
 
-      *
 
-      * @todo    Try implementing P J Acklam's refinement algorithm for greater
 
-      *            accuracy if I can get my head round the mathematics
 
-      *            (as described at) http://home.online.no/~pjacklam/notes/invnorm/
 
-      */
 
-     public static function LOGINV($probability, $mean, $stdDev)
 
-     {
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         $mean = Functions::flattenSingleValue($mean);
 
-         $stdDev = Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {
 
-                 return Functions::NAN();
 
-             }
 
-             return exp($mean + $stdDev * self::NORMSINV($probability));
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * LOGNORMDIST.
 
-      *
 
-      * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed
 
-      * with parameters mean and standard_dev.
 
-      *
 
-      * @param float $value
 
-      * @param float $mean
 
-      * @param float $stdDev
 
-      *
 
-      * @return float
 
-      */
 
-     public static function LOGNORMDIST($value, $mean, $stdDev)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $mean = Functions::flattenSingleValue($mean);
 
-         $stdDev = Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if (($value <= 0) || ($stdDev <= 0)) {
 
-                 return Functions::NAN();
 
-             }
 
-             return self::NORMSDIST((log($value) - $mean) / $stdDev);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * MAX.
 
-      *
 
-      * MAX returns the value of the element of the values passed that has the highest value,
 
-      *        with negative numbers considered smaller than positive numbers.
 
-      *
 
-      * Excel Function:
 
-      *        MAX(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function MAX(...$args)
 
-     {
 
-         $returnValue = null;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 if (($returnValue === null) || ($arg > $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         if ($returnValue === null) {
 
-             return 0;
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MAXA.
 
-      *
 
-      * Returns the greatest value in a list of arguments, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        MAXA(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function MAXA(...$args)
 
-     {
 
-         $returnValue = null;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 
-                 if (is_bool($arg)) {
 
-                     $arg = (int) $arg;
 
-                 } elseif (is_string($arg)) {
 
-                     $arg = 0;
 
-                 }
 
-                 if (($returnValue === null) || ($arg > $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         if ($returnValue === null) {
 
-             return 0;
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MAXIF.
 
-      *
 
-      * Counts the maximum value within a range of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        MAXIF(value1[,value2[, ...]],condition)
 
-      *
 
-      * @category Mathematical and Trigonometric Functions
 
-      *
 
-      * @param mixed $aArgs Data values
 
-      * @param string $condition the criteria that defines which cells will be checked
 
-      * @param mixed $sumArgs
 
-      *
 
-      * @return float
 
-      */
 
-     public static function MAXIF($aArgs, $condition, $sumArgs = [])
 
-     {
 
-         $returnValue = null;
 
-         $aArgs = Functions::flattenArray($aArgs);
 
-         $sumArgs = Functions::flattenArray($sumArgs);
 
-         if (empty($sumArgs)) {
 
-             $sumArgs = $aArgs;
 
-         }
 
-         $condition = Functions::ifCondition($condition);
 
-         // Loop through arguments
 
-         foreach ($aArgs as $key => $arg) {
 
-             if (!is_numeric($arg)) {
 
-                 $arg = Calculation::wrapResult(strtoupper($arg));
 
-             }
 
-             $testCondition = '=' . $arg . $condition;
 
-             if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 
-                 if (($returnValue === null) || ($arg > $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MEDIAN.
 
-      *
 
-      * Returns the median of the given numbers. The median is the number in the middle of a set of numbers.
 
-      *
 
-      * Excel Function:
 
-      *        MEDIAN(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function MEDIAN(...$args)
 
-     {
 
-         $returnValue = Functions::NAN();
 
-         $mArgs = [];
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 $mArgs[] = $arg;
 
-             }
 
-         }
 
-         $mValueCount = count($mArgs);
 
-         if ($mValueCount > 0) {
 
-             sort($mArgs, SORT_NUMERIC);
 
-             $mValueCount = $mValueCount / 2;
 
-             if ($mValueCount == floor($mValueCount)) {
 
-                 $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;
 
-             } else {
 
-                 $mValueCount = floor($mValueCount);
 
-                 $returnValue = $mArgs[$mValueCount];
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MIN.
 
-      *
 
-      * MIN returns the value of the element of the values passed that has the smallest value,
 
-      *        with negative numbers considered smaller than positive numbers.
 
-      *
 
-      * Excel Function:
 
-      *        MIN(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function MIN(...$args)
 
-     {
 
-         $returnValue = null;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 if (($returnValue === null) || ($arg < $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         if ($returnValue === null) {
 
-             return 0;
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MINA.
 
-      *
 
-      * Returns the smallest value in a list of arguments, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        MINA(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function MINA(...$args)
 
-     {
 
-         $returnValue = null;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 
-                 if (is_bool($arg)) {
 
-                     $arg = (int) $arg;
 
-                 } elseif (is_string($arg)) {
 
-                     $arg = 0;
 
-                 }
 
-                 if (($returnValue === null) || ($arg < $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         if ($returnValue === null) {
 
-             return 0;
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MINIF.
 
-      *
 
-      * Returns the minimum value within a range of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        MINIF(value1[,value2[, ...]],condition)
 
-      *
 
-      * @category Mathematical and Trigonometric Functions
 
-      *
 
-      * @param mixed $aArgs Data values
 
-      * @param string $condition the criteria that defines which cells will be checked
 
-      * @param mixed $sumArgs
 
-      *
 
-      * @return float
 
-      */
 
-     public static function MINIF($aArgs, $condition, $sumArgs = [])
 
-     {
 
-         $returnValue = null;
 
-         $aArgs = Functions::flattenArray($aArgs);
 
-         $sumArgs = Functions::flattenArray($sumArgs);
 
-         if (empty($sumArgs)) {
 
-             $sumArgs = $aArgs;
 
-         }
 
-         $condition = Functions::ifCondition($condition);
 
-         // Loop through arguments
 
-         foreach ($aArgs as $key => $arg) {
 
-             if (!is_numeric($arg)) {
 
-                 $arg = Calculation::wrapResult(strtoupper($arg));
 
-             }
 
-             $testCondition = '=' . $arg . $condition;
 
-             if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 
-                 if (($returnValue === null) || ($arg < $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     //
 
-     //    Special variant of array_count_values that isn't limited to strings and integers,
 
-     //        but can work with floating point numbers as values
 
-     //
 
-     private static function modeCalc($data)
 
-     {
 
-         $frequencyArray = [];
 
-         foreach ($data as $datum) {
 
-             $found = false;
 
-             foreach ($frequencyArray as $key => $value) {
 
-                 if ((string) $value['value'] == (string) $datum) {
 
-                     ++$frequencyArray[$key]['frequency'];
 
-                     $found = true;
 
-                     break;
 
-                 }
 
-             }
 
-             if (!$found) {
 
-                 $frequencyArray[] = [
 
-                     'value' => $datum,
 
-                     'frequency' => 1,
 
-                 ];
 
-             }
 
-         }
 
-         foreach ($frequencyArray as $key => $value) {
 
-             $frequencyList[$key] = $value['frequency'];
 
-             $valueList[$key] = $value['value'];
 
-         }
 
-         array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray);
 
-         if ($frequencyArray[0]['frequency'] == 1) {
 
-             return Functions::NA();
 
-         }
 
-         return $frequencyArray[0]['value'];
 
-     }
 
-     /**
 
-      * MODE.
 
-      *
 
-      * Returns the most frequently occurring, or repetitive, value in an array or range of data
 
-      *
 
-      * Excel Function:
 
-      *        MODE(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function MODE(...$args)
 
-     {
 
-         $returnValue = Functions::NA();
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         $mArgs = [];
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 $mArgs[] = $arg;
 
-             }
 
-         }
 
-         if (!empty($mArgs)) {
 
-             return self::modeCalc($mArgs);
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * NEGBINOMDIST.
 
-      *
 
-      * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that
 
-      *        there will be number_f failures before the number_s-th success, when the constant
 
-      *        probability of a success is probability_s. This function is similar to the binomial
 
-      *        distribution, except that the number of successes is fixed, and the number of trials is
 
-      *        variable. Like the binomial, trials are assumed to be independent.
 
-      *
 
-      * @param float $failures Number of Failures
 
-      * @param float $successes Threshold number of Successes
 
-      * @param float $probability Probability of success on each trial
 
-      *
 
-      * @return float
 
-      */
 
-     public static function NEGBINOMDIST($failures, $successes, $probability)
 
-     {
 
-         $failures = floor(Functions::flattenSingleValue($failures));
 
-         $successes = floor(Functions::flattenSingleValue($successes));
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {
 
-             if (($failures < 0) || ($successes < 1)) {
 
-                 return Functions::NAN();
 
-             } elseif (($probability < 0) || ($probability > 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) {
 
-                 if (($failures + $successes - 1) <= 0) {
 
-                     return Functions::NAN();
 
-                 }
 
-             }
 
-             return (MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * (pow($probability, $successes)) * (pow(1 - $probability, $failures));
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * NORMDIST.
 
-      *
 
-      * Returns the normal distribution for the specified mean and standard deviation. This
 
-      * function has a very wide range of applications in statistics, including hypothesis
 
-      * testing.
 
-      *
 
-      * @param float $value
 
-      * @param float $mean Mean Value
 
-      * @param float $stdDev Standard Deviation
 
-      * @param bool $cumulative
 
-      *
 
-      * @return float
 
-      */
 
-     public static function NORMDIST($value, $mean, $stdDev, $cumulative)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $mean = Functions::flattenSingleValue($mean);
 
-         $stdDev = Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if ($stdDev < 0) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     return 0.5 * (1 + Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2))));
 
-                 }
 
-                 return (1 / (self::SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean, 2) / (2 * ($stdDev * $stdDev))));
 
-             }
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * NORMINV.
 
-      *
 
-      * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.
 
-      *
 
-      * @param float $probability
 
-      * @param float $mean Mean Value
 
-      * @param float $stdDev Standard Deviation
 
-      *
 
-      * @return float
 
-      */
 
-     public static function NORMINV($probability, $mean, $stdDev)
 
-     {
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         $mean = Functions::flattenSingleValue($mean);
 
-         $stdDev = Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if (($probability < 0) || ($probability > 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ($stdDev < 0) {
 
-                 return Functions::NAN();
 
-             }
 
-             return (self::inverseNcdf($probability) * $stdDev) + $mean;
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * NORMSDIST.
 
-      *
 
-      * Returns the standard normal cumulative distribution function. The distribution has
 
-      * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a
 
-      * table of standard normal curve areas.
 
-      *
 
-      * @param float $value
 
-      *
 
-      * @return float
 
-      */
 
-     public static function NORMSDIST($value)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         return self::NORMDIST($value, 0, 1, true);
 
-     }
 
-     /**
 
-      * NORMSINV.
 
-      *
 
-      * Returns the inverse of the standard normal cumulative distribution
 
-      *
 
-      * @param float $value
 
-      *
 
-      * @return float
 
-      */
 
-     public static function NORMSINV($value)
 
-     {
 
-         return self::NORMINV($value, 0, 1);
 
-     }
 
-     /**
 
-      * PERCENTILE.
 
-      *
 
-      * Returns the nth percentile of values in a range..
 
-      *
 
-      * Excel Function:
 
-      *        PERCENTILE(value1[,value2[, ...]],entry)
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed $args Data values
 
-      * @param float $entry Percentile value in the range 0..1, inclusive.
 
-      *
 
-      * @return float
 
-      */
 
-     public static function PERCENTILE(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArray($args);
 
-         // Calculate
 
-         $entry = array_pop($aArgs);
 
-         if ((is_numeric($entry)) && (!is_string($entry))) {
 
-             if (($entry < 0) || ($entry > 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             $mArgs = [];
 
-             foreach ($aArgs as $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $mArgs[] = $arg;
 
-                 }
 
-             }
 
-             $mValueCount = count($mArgs);
 
-             if ($mValueCount > 0) {
 
-                 sort($mArgs);
 
-                 $count = self::COUNT($mArgs);
 
-                 $index = $entry * ($count - 1);
 
-                 $iBase = floor($index);
 
-                 if ($index == $iBase) {
 
-                     return $mArgs[$index];
 
-                 }
 
-                 $iNext = $iBase + 1;
 
-                 $iProportion = $index - $iBase;
 
-                 return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion);
 
-             }
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * PERCENTRANK.
 
-      *
 
-      * Returns the rank of a value in a data set as a percentage of the data set.
 
-      *
 
-      * @param float[] $valueSet An array of, or a reference to, a list of numbers
 
-      * @param int $value the number whose rank you want to find
 
-      * @param int $significance the number of significant digits for the returned percentage value
 
-      *
 
-      * @return float
 
-      */
 
-     public static function PERCENTRANK($valueSet, $value, $significance = 3)
 
-     {
 
-         $valueSet = Functions::flattenArray($valueSet);
 
-         $value = Functions::flattenSingleValue($value);
 
-         $significance = ($significance === null) ? 3 : (int) Functions::flattenSingleValue($significance);
 
-         foreach ($valueSet as $key => $valueEntry) {
 
-             if (!is_numeric($valueEntry)) {
 
-                 unset($valueSet[$key]);
 
-             }
 
-         }
 
-         sort($valueSet, SORT_NUMERIC);
 
-         $valueCount = count($valueSet);
 
-         if ($valueCount == 0) {
 
-             return Functions::NAN();
 
-         }
 
-         $valueAdjustor = $valueCount - 1;
 
-         if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {
 
-             return Functions::NA();
 
-         }
 
-         $pos = array_search($value, $valueSet);
 
-         if ($pos === false) {
 
-             $pos = 0;
 
-             $testValue = $valueSet[0];
 
-             while ($testValue < $value) {
 
-                 $testValue = $valueSet[++$pos];
 
-             }
 
-             --$pos;
 
-             $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));
 
-         }
 
-         return round($pos / $valueAdjustor, $significance);
 
-     }
 
-     /**
 
-      * PERMUT.
 
-      *
 
-      * Returns the number of permutations for a given number of objects that can be
 
-      *        selected from number objects. A permutation is any set or subset of objects or
 
-      *        events where internal order is significant. Permutations are different from
 
-      *        combinations, for which the internal order is not significant. Use this function
 
-      *        for lottery-style probability calculations.
 
-      *
 
-      * @param int $numObjs Number of different objects
 
-      * @param int $numInSet Number of objects in each permutation
 
-      *
 
-      * @return int Number of permutations
 
-      */
 
-     public static function PERMUT($numObjs, $numInSet)
 
-     {
 
-         $numObjs = Functions::flattenSingleValue($numObjs);
 
-         $numInSet = Functions::flattenSingleValue($numInSet);
 
-         if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {
 
-             $numInSet = floor($numInSet);
 
-             if ($numObjs < $numInSet) {
 
-                 return Functions::NAN();
 
-             }
 
-             return round(MathTrig::FACT($numObjs) / MathTrig::FACT($numObjs - $numInSet));
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * POISSON.
 
-      *
 
-      * Returns the Poisson distribution. A common application of the Poisson distribution
 
-      * is predicting the number of events over a specific time, such as the number of
 
-      * cars arriving at a toll plaza in 1 minute.
 
-      *
 
-      * @param float $value
 
-      * @param float $mean Mean Value
 
-      * @param bool $cumulative
 
-      *
 
-      * @return float
 
-      */
 
-     public static function POISSON($value, $mean, $cumulative)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $mean = Functions::flattenSingleValue($mean);
 
-         if ((is_numeric($value)) && (is_numeric($mean))) {
 
-             if (($value < 0) || ($mean <= 0)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     $summer = 0;
 
-                     $floor = floor($value);
 
-                     for ($i = 0; $i <= $floor; ++$i) {
 
-                         $summer += pow($mean, $i) / MathTrig::FACT($i);
 
-                     }
 
-                     return exp(0 - $mean) * $summer;
 
-                 }
 
-                 return (exp(0 - $mean) * pow($mean, $value)) / MathTrig::FACT($value);
 
-             }
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * QUARTILE.
 
-      *
 
-      * Returns the quartile of a data set.
 
-      *
 
-      * Excel Function:
 
-      *        QUARTILE(value1[,value2[, ...]],entry)
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed $args Data values
 
-      * @param int $entry Quartile value in the range 1..3, inclusive.
 
-      *
 
-      * @return float
 
-      */
 
-     public static function QUARTILE(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArray($args);
 
-         // Calculate
 
-         $entry = floor(array_pop($aArgs));
 
-         if ((is_numeric($entry)) && (!is_string($entry))) {
 
-             $entry /= 4;
 
-             if (($entry < 0) || ($entry > 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             return self::PERCENTILE($aArgs, $entry);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * RANK.
 
-      *
 
-      * Returns the rank of a number in a list of numbers.
 
-      *
 
-      * @param int $value the number whose rank you want to find
 
-      * @param float[] $valueSet An array of, or a reference to, a list of numbers
 
-      * @param int $order Order to sort the values in the value set
 
-      *
 
-      * @return float
 
-      */
 
-     public static function RANK($value, $valueSet, $order = 0)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $valueSet = Functions::flattenArray($valueSet);
 
-         $order = ($order === null) ? 0 : (int) Functions::flattenSingleValue($order);
 
-         foreach ($valueSet as $key => $valueEntry) {
 
-             if (!is_numeric($valueEntry)) {
 
-                 unset($valueSet[$key]);
 
-             }
 
-         }
 
-         if ($order == 0) {
 
-             rsort($valueSet, SORT_NUMERIC);
 
-         } else {
 
-             sort($valueSet, SORT_NUMERIC);
 
-         }
 
-         $pos = array_search($value, $valueSet);
 
-         if ($pos === false) {
 
-             return Functions::NA();
 
-         }
 
-         return ++$pos;
 
-     }
 
-     /**
 
-      * RSQ.
 
-      *
 
-      * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.
 
-      *
 
-      * @param mixed[] $yValues Data Series Y
 
-      * @param mixed[] $xValues Data Series X
 
-      *
 
-      * @return float
 
-      */
 
-     public static function RSQ($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return Functions::DIV0();
 
-         }
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getGoodnessOfFit();
 
-     }
 
-     /**
 
-      * SKEW.
 
-      *
 
-      * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry
 
-      * of a distribution around its mean. Positive skewness indicates a distribution with an
 
-      * asymmetric tail extending toward more positive values. Negative skewness indicates a
 
-      * distribution with an asymmetric tail extending toward more negative values.
 
-      *
 
-      * @param array ...$args Data Series
 
-      *
 
-      * @return float
 
-      */
 
-     public static function SKEW(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         $mean = self::AVERAGE($aArgs);
 
-         $stdDev = self::STDEV($aArgs);
 
-         $count = $summer = 0;
 
-         // Loop through arguments
 
-         foreach ($aArgs as $k => $arg) {
 
-             if ((is_bool($arg)) &&
 
-                 (!Functions::isMatrixValue($k))) {
 
-             } else {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $summer += pow((($arg - $mean) / $stdDev), 3);
 
-                     ++$count;
 
-                 }
 
-             }
 
-         }
 
-         if ($count > 2) {
 
-             return $summer * ($count / (($count - 1) * ($count - 2)));
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * SLOPE.
 
-      *
 
-      * Returns the slope of the linear regression line through data points in known_y's and known_x's.
 
-      *
 
-      * @param mixed[] $yValues Data Series Y
 
-      * @param mixed[] $xValues Data Series X
 
-      *
 
-      * @return float
 
-      */
 
-     public static function SLOPE($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return Functions::DIV0();
 
-         }
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getSlope();
 
-     }
 
-     /**
 
-      * SMALL.
 
-      *
 
-      * Returns the nth smallest value in a data set. You can use this function to
 
-      *        select a value based on its relative standing.
 
-      *
 
-      * Excel Function:
 
-      *        SMALL(value1[,value2[, ...]],entry)
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed $args Data values
 
-      * @param int $entry Position (ordered from the smallest) in the array or range of data to return
 
-      *
 
-      * @return float
 
-      */
 
-     public static function SMALL(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArray($args);
 
-         // Calculate
 
-         $entry = array_pop($aArgs);
 
-         if ((is_numeric($entry)) && (!is_string($entry))) {
 
-             $mArgs = [];
 
-             foreach ($aArgs as $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $mArgs[] = $arg;
 
-                 }
 
-             }
 
-             $count = self::COUNT($mArgs);
 
-             $entry = floor(--$entry);
 
-             if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
 
-                 return Functions::NAN();
 
-             }
 
-             sort($mArgs);
 
-             return $mArgs[$entry];
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * STANDARDIZE.
 
-      *
 
-      * Returns a normalized value from a distribution characterized by mean and standard_dev.
 
-      *
 
-      * @param float $value Value to normalize
 
-      * @param float $mean Mean Value
 
-      * @param float $stdDev Standard Deviation
 
-      *
 
-      * @return float Standardized value
 
-      */
 
-     public static function STANDARDIZE($value, $mean, $stdDev)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $mean = Functions::flattenSingleValue($mean);
 
-         $stdDev = Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if ($stdDev <= 0) {
 
-                 return Functions::NAN();
 
-             }
 
-             return ($value - $mean) / $stdDev;
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * STDEV.
 
-      *
 
-      * Estimates standard deviation based on a sample. The standard deviation is a measure of how
 
-      *        widely values are dispersed from the average value (the mean).
 
-      *
 
-      * Excel Function:
 
-      *        STDEV(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function STDEV(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         // Return value
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGE($aArgs);
 
-         if ($aMean !== null) {
 
-             $aCount = -1;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                     $arg = (int) $arg;
 
-                 }
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     if ($returnValue === null) {
 
-                         $returnValue = pow(($arg - $aMean), 2);
 
-                     } else {
 
-                         $returnValue += pow(($arg - $aMean), 2);
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-             // Return
 
-             if (($aCount > 0) && ($returnValue >= 0)) {
 
-                 return sqrt($returnValue / $aCount);
 
-             }
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * STDEVA.
 
-      *
 
-      * Estimates standard deviation based on a sample, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        STDEVA(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function STDEVA(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGEA($aArgs);
 
-         if ($aMean !== null) {
 
-             $aCount = -1;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     (!Functions::isMatrixValue($k))) {
 
-                 } else {
 
-                     // Is it a numeric value?
 
-                     if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 
-                         if (is_bool($arg)) {
 
-                             $arg = (int) $arg;
 
-                         } elseif (is_string($arg)) {
 
-                             $arg = 0;
 
-                         }
 
-                         if ($returnValue === null) {
 
-                             $returnValue = pow(($arg - $aMean), 2);
 
-                         } else {
 
-                             $returnValue += pow(($arg - $aMean), 2);
 
-                         }
 
-                         ++$aCount;
 
-                     }
 
-                 }
 
-             }
 
-             if (($aCount > 0) && ($returnValue >= 0)) {
 
-                 return sqrt($returnValue / $aCount);
 
-             }
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * STDEVP.
 
-      *
 
-      * Calculates standard deviation based on the entire population
 
-      *
 
-      * Excel Function:
 
-      *        STDEVP(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function STDEVP(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGE($aArgs);
 
-         if ($aMean !== null) {
 
-             $aCount = 0;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                     $arg = (int) $arg;
 
-                 }
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     if ($returnValue === null) {
 
-                         $returnValue = pow(($arg - $aMean), 2);
 
-                     } else {
 
-                         $returnValue += pow(($arg - $aMean), 2);
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-             if (($aCount > 0) && ($returnValue >= 0)) {
 
-                 return sqrt($returnValue / $aCount);
 
-             }
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * STDEVPA.
 
-      *
 
-      * Calculates standard deviation based on the entire population, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        STDEVPA(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function STDEVPA(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGEA($aArgs);
 
-         if ($aMean !== null) {
 
-             $aCount = 0;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     (!Functions::isMatrixValue($k))) {
 
-                 } else {
 
-                     // Is it a numeric value?
 
-                     if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 
-                         if (is_bool($arg)) {
 
-                             $arg = (int) $arg;
 
-                         } elseif (is_string($arg)) {
 
-                             $arg = 0;
 
-                         }
 
-                         if ($returnValue === null) {
 
-                             $returnValue = pow(($arg - $aMean), 2);
 
-                         } else {
 
-                             $returnValue += pow(($arg - $aMean), 2);
 
-                         }
 
-                         ++$aCount;
 
-                     }
 
-                 }
 
-             }
 
-             if (($aCount > 0) && ($returnValue >= 0)) {
 
-                 return sqrt($returnValue / $aCount);
 
-             }
 
-         }
 
-         return Functions::DIV0();
 
-     }
 
-     /**
 
-      * STEYX.
 
-      *
 
-      * Returns the standard error of the predicted y-value for each x in the regression.
 
-      *
 
-      * @param mixed[] $yValues Data Series Y
 
-      * @param mixed[] $xValues Data Series X
 
-      *
 
-      * @return float
 
-      */
 
-     public static function STEYX($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return Functions::DIV0();
 
-         }
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getStdevOfResiduals();
 
-     }
 
-     /**
 
-      * TDIST.
 
-      *
 
-      * Returns the probability of Student's T distribution.
 
-      *
 
-      * @param float $value Value for the function
 
-      * @param float $degrees degrees of freedom
 
-      * @param float $tails number of tails (1 or 2)
 
-      *
 
-      * @return float
 
-      */
 
-     public static function TDIST($value, $degrees, $tails)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $degrees = floor(Functions::flattenSingleValue($degrees));
 
-         $tails = floor(Functions::flattenSingleValue($tails));
 
-         if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {
 
-             if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {
 
-                 return Functions::NAN();
 
-             }
 
-             //    tdist, which finds the probability that corresponds to a given value
 
-             //    of t with k degrees of freedom. This algorithm is translated from a
 
-             //    pascal function on p81 of "Statistical Computing in Pascal" by D
 
-             //    Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:
 
-             //    London). The above Pascal algorithm is itself a translation of the
 
-             //    fortran algoritm "AS 3" by B E Cooper of the Atlas Computer
 
-             //    Laboratory as reported in (among other places) "Applied Statistics
 
-             //    Algorithms", editied by P Griffiths and I D Hill (1985; Ellis
 
-             //    Horwood Ltd.; W. Sussex, England).
 
-             $tterm = $degrees;
 
-             $ttheta = atan2($value, sqrt($tterm));
 
-             $tc = cos($ttheta);
 
-             $ts = sin($ttheta);
 
-             $tsum = 0;
 
-             if (($degrees % 2) == 1) {
 
-                 $ti = 3;
 
-                 $tterm = $tc;
 
-             } else {
 
-                 $ti = 2;
 
-                 $tterm = 1;
 
-             }
 
-             $tsum = $tterm;
 
-             while ($ti < $degrees) {
 
-                 $tterm *= $tc * $tc * ($ti - 1) / $ti;
 
-                 $tsum += $tterm;
 
-                 $ti += 2;
 
-             }
 
-             $tsum *= $ts;
 
-             if (($degrees % 2) == 1) {
 
-                 $tsum = Functions::M_2DIVPI * ($tsum + $ttheta);
 
-             }
 
-             $tValue = 0.5 * (1 + $tsum);
 
-             if ($tails == 1) {
 
-                 return 1 - abs($tValue);
 
-             }
 
-             return 1 - abs((1 - $tValue) - $tValue);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * TINV.
 
-      *
 
-      * Returns the one-tailed probability of the chi-squared distribution.
 
-      *
 
-      * @param float $probability Probability for the function
 
-      * @param float $degrees degrees of freedom
 
-      *
 
-      * @return float
 
-      */
 
-     public static function TINV($probability, $degrees)
 
-     {
 
-         $probability = Functions::flattenSingleValue($probability);
 
-         $degrees = floor(Functions::flattenSingleValue($degrees));
 
-         if ((is_numeric($probability)) && (is_numeric($degrees))) {
 
-             $xLo = 100;
 
-             $xHi = 0;
 
-             $x = $xNew = 1;
 
-             $dx = 1;
 
-             $i = 0;
 
-             while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) {
 
-                 // Apply Newton-Raphson step
 
-                 $result = self::TDIST($x, $degrees, 2);
 
-                 $error = $result - $probability;
 
-                 if ($error == 0.0) {
 
-                     $dx = 0;
 
-                 } elseif ($error < 0.0) {
 
-                     $xLo = $x;
 
-                 } else {
 
-                     $xHi = $x;
 
-                 }
 
-                 // Avoid division by zero
 
-                 if ($result != 0.0) {
 
-                     $dx = $error / $result;
 
-                     $xNew = $x - $dx;
 
-                 }
 
-                 // If the NR fails to converge (which for example may be the
 
-                 // case if the initial guess is too rough) we apply a bisection
 
-                 // step to determine a more narrow interval around the root.
 
-                 if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
 
-                     $xNew = ($xLo + $xHi) / 2;
 
-                     $dx = $xNew - $x;
 
-                 }
 
-                 $x = $xNew;
 
-             }
 
-             if ($i == self::MAX_ITERATIONS) {
 
-                 return Functions::NA();
 
-             }
 
-             return round($x, 12);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * TREND.
 
-      *
 
-      * Returns values along a linear Trend
 
-      *
 
-      * @param mixed[] $yValues Data Series Y
 
-      * @param mixed[] $xValues Data Series X
 
-      * @param mixed[] $newValues Values of X for which we want to find Y
 
-      * @param bool $const a logical value specifying whether to force the intersect to equal 0
 
-      *
 
-      * @return array of float
 
-      */
 
-     public static function TREND($yValues, $xValues = [], $newValues = [], $const = true)
 
-     {
 
-         $yValues = Functions::flattenArray($yValues);
 
-         $xValues = Functions::flattenArray($xValues);
 
-         $newValues = Functions::flattenArray($newValues);
 
-         $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);
 
-         $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);
 
-         if (empty($newValues)) {
 
-             $newValues = $bestFitLinear->getXValues();
 
-         }
 
-         $returnArray = [];
 
-         foreach ($newValues as $xValue) {
 
-             $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);
 
-         }
 
-         return $returnArray;
 
-     }
 
-     /**
 
-      * TRIMMEAN.
 
-      *
 
-      * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean
 
-      *        taken by excluding a percentage of data points from the top and bottom tails
 
-      *        of a data set.
 
-      *
 
-      * Excel Function:
 
-      *        TRIMEAN(value1[,value2[, ...]], $discard)
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed $args Data values
 
-      * @param float $discard Percentage to discard
 
-      *
 
-      * @return float
 
-      */
 
-     public static function TRIMMEAN(...$args)
 
-     {
 
-         $aArgs = Functions::flattenArray($args);
 
-         // Calculate
 
-         $percent = array_pop($aArgs);
 
-         if ((is_numeric($percent)) && (!is_string($percent))) {
 
-             if (($percent < 0) || ($percent > 1)) {
 
-                 return Functions::NAN();
 
-             }
 
-             $mArgs = [];
 
-             foreach ($aArgs as $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $mArgs[] = $arg;
 
-                 }
 
-             }
 
-             $discard = floor(self::COUNT($mArgs) * $percent / 2);
 
-             sort($mArgs);
 
-             for ($i = 0; $i < $discard; ++$i) {
 
-                 array_pop($mArgs);
 
-                 array_shift($mArgs);
 
-             }
 
-             return self::AVERAGE($mArgs);
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * VARFunc.
 
-      *
 
-      * Estimates variance based on a sample.
 
-      *
 
-      * Excel Function:
 
-      *        VAR(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function VARFunc(...$args)
 
-     {
 
-         $returnValue = Functions::DIV0();
 
-         $summerA = $summerB = 0;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         $aCount = 0;
 
-         foreach ($aArgs as $arg) {
 
-             if (is_bool($arg)) {
 
-                 $arg = (int) $arg;
 
-             }
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 $summerA += ($arg * $arg);
 
-                 $summerB += $arg;
 
-                 ++$aCount;
 
-             }
 
-         }
 
-         if ($aCount > 1) {
 
-             $summerA *= $aCount;
 
-             $summerB *= $summerB;
 
-             $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * VARA.
 
-      *
 
-      * Estimates variance based on a sample, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        VARA(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function VARA(...$args)
 
-     {
 
-         $returnValue = Functions::DIV0();
 
-         $summerA = $summerB = 0;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         $aCount = 0;
 
-         foreach ($aArgs as $k => $arg) {
 
-             if ((is_string($arg)) &&
 
-                 (Functions::isValue($k))) {
 
-                 return Functions::VALUE();
 
-             } elseif ((is_string($arg)) &&
 
-                 (!Functions::isMatrixValue($k))) {
 
-             } else {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 
-                     if (is_bool($arg)) {
 
-                         $arg = (int) $arg;
 
-                     } elseif (is_string($arg)) {
 
-                         $arg = 0;
 
-                     }
 
-                     $summerA += ($arg * $arg);
 
-                     $summerB += $arg;
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-         }
 
-         if ($aCount > 1) {
 
-             $summerA *= $aCount;
 
-             $summerB *= $summerB;
 
-             $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * VARP.
 
-      *
 
-      * Calculates variance based on the entire population
 
-      *
 
-      * Excel Function:
 
-      *        VARP(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function VARP(...$args)
 
-     {
 
-         // Return value
 
-         $returnValue = Functions::DIV0();
 
-         $summerA = $summerB = 0;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArray($args);
 
-         $aCount = 0;
 
-         foreach ($aArgs as $arg) {
 
-             if (is_bool($arg)) {
 
-                 $arg = (int) $arg;
 
-             }
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 $summerA += ($arg * $arg);
 
-                 $summerB += $arg;
 
-                 ++$aCount;
 
-             }
 
-         }
 
-         if ($aCount > 0) {
 
-             $summerA *= $aCount;
 
-             $summerB *= $summerB;
 
-             $returnValue = ($summerA - $summerB) / ($aCount * $aCount);
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * VARPA.
 
-      *
 
-      * Calculates variance based on the entire population, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        VARPA(value1[,value2[, ...]])
 
-      *
 
-      * @category Statistical Functions
 
-      *
 
-      * @param mixed ...$args Data values
 
-      *
 
-      * @return float
 
-      */
 
-     public static function VARPA(...$args)
 
-     {
 
-         $returnValue = Functions::DIV0();
 
-         $summerA = $summerB = 0;
 
-         // Loop through arguments
 
-         $aArgs = Functions::flattenArrayIndexed($args);
 
-         $aCount = 0;
 
-         foreach ($aArgs as $k => $arg) {
 
-             if ((is_string($arg)) &&
 
-                 (Functions::isValue($k))) {
 
-                 return Functions::VALUE();
 
-             } elseif ((is_string($arg)) &&
 
-                 (!Functions::isMatrixValue($k))) {
 
-             } else {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 
-                     if (is_bool($arg)) {
 
-                         $arg = (int) $arg;
 
-                     } elseif (is_string($arg)) {
 
-                         $arg = 0;
 
-                     }
 
-                     $summerA += ($arg * $arg);
 
-                     $summerB += $arg;
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-         }
 
-         if ($aCount > 0) {
 
-             $summerA *= $aCount;
 
-             $summerB *= $summerB;
 
-             $returnValue = ($summerA - $summerB) / ($aCount * $aCount);
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * WEIBULL.
 
-      *
 
-      * Returns the Weibull distribution. Use this distribution in reliability
 
-      * analysis, such as calculating a device's mean time to failure.
 
-      *
 
-      * @param float $value
 
-      * @param float $alpha Alpha Parameter
 
-      * @param float $beta Beta Parameter
 
-      * @param bool $cumulative
 
-      *
 
-      * @return float
 
-      */
 
-     public static function WEIBULL($value, $alpha, $beta, $cumulative)
 
-     {
 
-         $value = Functions::flattenSingleValue($value);
 
-         $alpha = Functions::flattenSingleValue($alpha);
 
-         $beta = Functions::flattenSingleValue($beta);
 
-         if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {
 
-             if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {
 
-                 return Functions::NAN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     return 1 - exp(0 - pow($value / $beta, $alpha));
 
-                 }
 
-                 return ($alpha / pow($beta, $alpha)) * pow($value, $alpha - 1) * exp(0 - pow($value / $beta, $alpha));
 
-             }
 
-         }
 
-         return Functions::VALUE();
 
-     }
 
-     /**
 
-      * ZTEST.
 
-      *
 
-      * Returns the Weibull distribution. Use this distribution in reliability
 
-      * analysis, such as calculating a device's mean time to failure.
 
-      *
 
-      * @param float $dataSet
 
-      * @param float $m0 Alpha Parameter
 
-      * @param float $sigma Beta Parameter
 
-      *
 
-      * @return float
 
-      */
 
-     public static function ZTEST($dataSet, $m0, $sigma = null)
 
-     {
 
-         $dataSet = Functions::flattenArrayIndexed($dataSet);
 
-         $m0 = Functions::flattenSingleValue($m0);
 
-         $sigma = Functions::flattenSingleValue($sigma);
 
-         if ($sigma === null) {
 
-             $sigma = self::STDEV($dataSet);
 
-         }
 
-         $n = count($dataSet);
 
-         return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / sqrt($n)));
 
-     }
 
- }
 
 
  |