| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 | <?phpnamespace PhpOffice\PhpSpreadsheet\Shared\JAMA;use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;/** *    For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n *    unit lower triangular matrix L, an n-by-n upper triangular matrix U, *    and a permutation vector piv of length m so that A(piv,:) = L*U. *    If m < n, then L is m-by-m and U is m-by-n. * *    The LU decompostion with pivoting always exists, even if the matrix is *    singular, so the constructor will never fail. The primary use of the *    LU decomposition is in the solution of square systems of simultaneous *    linear equations. This will fail if isNonsingular() returns false. * *    @author Paul Meagher *    @author Bartosz Matosiuk *    @author Michael Bommarito * *    @version 1.1 */class LUDecomposition{    const MATRIX_SINGULAR_EXCEPTION = 'Can only perform operation on singular matrix.';    const MATRIX_SQUARE_EXCEPTION = 'Mismatched Row dimension';    /**     * Decomposition storage.     *     * @var array     */    private $LU = [];    /**     * Row dimension.     *     * @var int     */    private $m;    /**     * Column dimension.     *     * @var int     */    private $n;    /**     * Pivot sign.     *     * @var int     */    private $pivsign;    /**     * Internal storage of pivot vector.     *     * @var array     */    private $piv = [];    /**     * LU Decomposition constructor.     *     * @param Matrix $A Rectangular matrix     */    public function __construct($A)    {        if ($A instanceof Matrix) {            // Use a "left-looking", dot-product, Crout/Doolittle algorithm.            $this->LU = $A->getArray();            $this->m = $A->getRowDimension();            $this->n = $A->getColumnDimension();            for ($i = 0; $i < $this->m; ++$i) {                $this->piv[$i] = $i;            }            $this->pivsign = 1;            $LUrowi = $LUcolj = [];            // Outer loop.            for ($j = 0; $j < $this->n; ++$j) {                // Make a copy of the j-th column to localize references.                for ($i = 0; $i < $this->m; ++$i) {                    $LUcolj[$i] = &$this->LU[$i][$j];                }                // Apply previous transformations.                for ($i = 0; $i < $this->m; ++$i) {                    $LUrowi = $this->LU[$i];                    // Most of the time is spent in the following dot product.                    $kmax = min($i, $j);                    $s = 0.0;                    for ($k = 0; $k < $kmax; ++$k) {                        $s += $LUrowi[$k] * $LUcolj[$k];                    }                    $LUrowi[$j] = $LUcolj[$i] -= $s;                }                // Find pivot and exchange if necessary.                $p = $j;                for ($i = $j + 1; $i < $this->m; ++$i) {                    if (abs($LUcolj[$i]) > abs($LUcolj[$p])) {                        $p = $i;                    }                }                if ($p != $j) {                    for ($k = 0; $k < $this->n; ++$k) {                        $t = $this->LU[$p][$k];                        $this->LU[$p][$k] = $this->LU[$j][$k];                        $this->LU[$j][$k] = $t;                    }                    $k = $this->piv[$p];                    $this->piv[$p] = $this->piv[$j];                    $this->piv[$j] = $k;                    $this->pivsign = $this->pivsign * -1;                }                // Compute multipliers.                if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) {                    for ($i = $j + 1; $i < $this->m; ++$i) {                        $this->LU[$i][$j] /= $this->LU[$j][$j];                    }                }            }        } else {            throw new CalculationException(Matrix::ARGUMENT_TYPE_EXCEPTION);        }    }    //    function __construct()    /**     * Get lower triangular factor.     *     * @return Matrix Lower triangular factor     */    public function getL()    {        for ($i = 0; $i < $this->m; ++$i) {            for ($j = 0; $j < $this->n; ++$j) {                if ($i > $j) {                    $L[$i][$j] = $this->LU[$i][$j];                } elseif ($i == $j) {                    $L[$i][$j] = 1.0;                } else {                    $L[$i][$j] = 0.0;                }            }        }        return new Matrix($L);    }    //    function getL()    /**     * Get upper triangular factor.     *     * @return Matrix Upper triangular factor     */    public function getU()    {        for ($i = 0; $i < $this->n; ++$i) {            for ($j = 0; $j < $this->n; ++$j) {                if ($i <= $j) {                    $U[$i][$j] = $this->LU[$i][$j];                } else {                    $U[$i][$j] = 0.0;                }            }        }        return new Matrix($U);    }    //    function getU()    /**     * Return pivot permutation vector.     *     * @return array Pivot vector     */    public function getPivot()    {        return $this->piv;    }    //    function getPivot()    /**     * Alias for getPivot.     *     *    @see getPivot     */    public function getDoublePivot()    {        return $this->getPivot();    }    //    function getDoublePivot()    /**     *    Is the matrix nonsingular?     *     * @return bool true if U, and hence A, is nonsingular     */    public function isNonsingular()    {        for ($j = 0; $j < $this->n; ++$j) {            if ($this->LU[$j][$j] == 0) {                return false;            }        }        return true;    }    //    function isNonsingular()    /**     * Count determinants.     *     * @return array d matrix deterninat     */    public function det()    {        if ($this->m == $this->n) {            $d = $this->pivsign;            for ($j = 0; $j < $this->n; ++$j) {                $d *= $this->LU[$j][$j];            }            return $d;        }        throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);    }    //    function det()    /**     * Solve A*X = B.     *     * @param mixed $B a Matrix with as many rows as A and any number of columns     *     * @throws CalculationException illegalArgumentException Matrix row dimensions must agree     * @throws CalculationException runtimeException  Matrix is singular     *     * @return Matrix X so that L*U*X = B(piv,:)     */    public function solve($B)    {        if ($B->getRowDimension() == $this->m) {            if ($this->isNonsingular()) {                // Copy right hand side with pivoting                $nx = $B->getColumnDimension();                $X = $B->getMatrix($this->piv, 0, $nx - 1);                // Solve L*Y = B(piv,:)                for ($k = 0; $k < $this->n; ++$k) {                    for ($i = $k + 1; $i < $this->n; ++$i) {                        for ($j = 0; $j < $nx; ++$j) {                            $X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];                        }                    }                }                // Solve U*X = Y;                for ($k = $this->n - 1; $k >= 0; --$k) {                    for ($j = 0; $j < $nx; ++$j) {                        $X->A[$k][$j] /= $this->LU[$k][$k];                    }                    for ($i = 0; $i < $k; ++$i) {                        for ($j = 0; $j < $nx; ++$j) {                            $X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];                        }                    }                }                return $X;            }            throw new CalculationException(self::MATRIX_SINGULAR_EXCEPTION);        }        throw new CalculationException(self::MATRIX_SQUARE_EXCEPTION);    }}
 |