| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 | <?phpnamespace PhpOffice\PhpSpreadsheet\Shared\JAMA;use PhpOffice\PhpSpreadsheet\Calculation\Exception as CalculationException;/** *    Cholesky decomposition class. * *    For a symmetric, positive definite matrix A, the Cholesky decomposition *    is an lower triangular matrix L so that A = L*L'. * *    If the matrix is not symmetric or positive definite, the constructor *    returns a partial decomposition and sets an internal flag that may *    be queried by the isSPD() method. * *    @author Paul Meagher *    @author Michael Bommarito * *    @version 1.2 */class CholeskyDecomposition{    /**     * Decomposition storage.     *     * @var array     */    private $L = [];    /**     * Matrix row and column dimension.     *     * @var int     */    private $m;    /**     * Symmetric positive definite flag.     *     * @var bool     */    private $isspd = true;    /**     * CholeskyDecomposition.     *     *    Class constructor - decomposes symmetric positive definite matrix     *     * @param Matrix $A Matrix square symmetric positive definite matrix     */    public function __construct(Matrix $A)    {        $this->L = $A->getArray();        $this->m = $A->getRowDimension();        for ($i = 0; $i < $this->m; ++$i) {            for ($j = $i; $j < $this->m; ++$j) {                for ($sum = $this->L[$i][$j], $k = $i - 1; $k >= 0; --$k) {                    $sum -= $this->L[$i][$k] * $this->L[$j][$k];                }                if ($i == $j) {                    if ($sum >= 0) {                        $this->L[$i][$i] = sqrt($sum);                    } else {                        $this->isspd = false;                    }                } else {                    if ($this->L[$i][$i] != 0) {                        $this->L[$j][$i] = $sum / $this->L[$i][$i];                    }                }            }            for ($k = $i + 1; $k < $this->m; ++$k) {                $this->L[$i][$k] = 0.0;            }        }    }    /**     *    Is the matrix symmetric and positive definite?     *     * @return bool     */    public function isSPD()    {        return $this->isspd;    }    /**     * getL.     *     * Return triangular factor.     *     * @return Matrix Lower triangular matrix     */    public function getL()    {        return new Matrix($this->L);    }    /**     * Solve A*X = B.     *     * @param $B Row-equal matrix     *     * @return Matrix L * L' * X = B     */    public function solve(Matrix $B)    {        if ($B->getRowDimension() == $this->m) {            if ($this->isspd) {                $X = $B->getArrayCopy();                $nx = $B->getColumnDimension();                for ($k = 0; $k < $this->m; ++$k) {                    for ($i = $k + 1; $i < $this->m; ++$i) {                        for ($j = 0; $j < $nx; ++$j) {                            $X[$i][$j] -= $X[$k][$j] * $this->L[$i][$k];                        }                    }                    for ($j = 0; $j < $nx; ++$j) {                        $X[$k][$j] /= $this->L[$k][$k];                    }                }                for ($k = $this->m - 1; $k >= 0; --$k) {                    for ($j = 0; $j < $nx; ++$j) {                        $X[$k][$j] /= $this->L[$k][$k];                    }                    for ($i = 0; $i < $k; ++$i) {                        for ($j = 0; $j < $nx; ++$j) {                            $X[$i][$j] -= $X[$k][$j] * $this->L[$k][$i];                        }                    }                }                return new Matrix($X, $this->m, $nx);            }            throw new CalculationException(Matrix::MATRIX_SPD_EXCEPTION);        }        throw new CalculationException(Matrix::MATRIX_DIMENSION_EXCEPTION);    }}
 |