123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- <?php
- namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
- class ExponentialBestFit extends BestFit
- {
- /**
- * Algorithm type to use for best-fit
- * (Name of this Trend class).
- *
- * @var string
- */
- protected $bestFitType = 'exponential';
- /**
- * Return the Y-Value for a specified value of X.
- *
- * @param float $xValue X-Value
- *
- * @return float Y-Value
- */
- public function getValueOfYForX($xValue)
- {
- return $this->getIntersect() * pow($this->getSlope(), ($xValue - $this->xOffset));
- }
- /**
- * Return the X-Value for a specified value of Y.
- *
- * @param float $yValue Y-Value
- *
- * @return float X-Value
- */
- public function getValueOfXForY($yValue)
- {
- return log(($yValue + $this->yOffset) / $this->getIntersect()) / log($this->getSlope());
- }
- /**
- * Return the Equation of the best-fit line.
- *
- * @param int $dp Number of places of decimal precision to display
- *
- * @return string
- */
- public function getEquation($dp = 0)
- {
- $slope = $this->getSlope($dp);
- $intersect = $this->getIntersect($dp);
- return 'Y = ' . $intersect . ' * ' . $slope . '^X';
- }
- /**
- * Return the Slope of the line.
- *
- * @param int $dp Number of places of decimal precision to display
- *
- * @return float
- */
- public function getSlope($dp = 0)
- {
- if ($dp != 0) {
- return round(exp($this->slope), $dp);
- }
- return exp($this->slope);
- }
- /**
- * Return the Value of X where it intersects Y = 0.
- *
- * @param int $dp Number of places of decimal precision to display
- *
- * @return float
- */
- public function getIntersect($dp = 0)
- {
- if ($dp != 0) {
- return round(exp($this->intersect), $dp);
- }
- return exp($this->intersect);
- }
- /**
- * Execute the regression and calculate the goodness of fit for a set of X and Y data values.
- *
- * @param float[] $yValues The set of Y-values for this regression
- * @param float[] $xValues The set of X-values for this regression
- * @param bool $const
- */
- private function exponentialRegression($yValues, $xValues, $const)
- {
- foreach ($yValues as &$value) {
- if ($value < 0.0) {
- $value = 0 - log(abs($value));
- } elseif ($value > 0.0) {
- $value = log($value);
- }
- }
- unset($value);
- $this->leastSquareFit($yValues, $xValues, $const);
- }
- /**
- * Define the regression and calculate the goodness of fit for a set of X and Y data values.
- *
- * @param float[] $yValues The set of Y-values for this regression
- * @param float[] $xValues The set of X-values for this regression
- * @param bool $const
- */
- public function __construct($yValues, $xValues = [], $const = true)
- {
- if (parent::__construct($yValues, $xValues) !== false) {
- $this->exponentialRegression($yValues, $xValues, $const);
- }
- }
- }
|