| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 | // Copyright 2019 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////     https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.#include "absl/profiling/internal/exponential_biased.h"#include <stdint.h>#include <algorithm>#include <atomic>#include <cmath>#include <limits>#include "absl/base/attributes.h"#include "absl/base/optimization.h"namespace absl {ABSL_NAMESPACE_BEGINnamespace profiling_internal {// The algorithm generates a random number between 0 and 1 and applies the// inverse cumulative distribution function for an exponential. Specifically:// Let m be the inverse of the sample period, then the probability// distribution function is m*exp(-mx) so the CDF is// p = 1 - exp(-mx), so// q = 1 - p = exp(-mx)// log_e(q) = -mx// -log_e(q)/m = x// log_2(q) * (-log_e(2) * 1/m) = x// In the code, q is actually in the range 1 to 2**26, hence the -26 belowint64_t ExponentialBiased::GetSkipCount(int64_t mean) {  if (ABSL_PREDICT_FALSE(!initialized_)) {    Initialize();  }  uint64_t rng = NextRandom(rng_);  rng_ = rng;  // Take the top 26 bits as the random number  // (This plus the 1<<58 sampling bound give a max possible step of  // 5194297183973780480 bytes.)  // The uint32_t cast is to prevent a (hard-to-reproduce) NAN  // under piii debug for some binaries.  double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0;  // Put the computed p-value through the CDF of a geometric.  double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean);  // Very large values of interval overflow int64_t. To avoid that, we will  // cheat and clamp any huge values to (int64_t max)/2. This is a potential  // source of bias, but the mean would need to be such a large value that it's  // not likely to come up. For example, with a mean of 1e18, the probability of  // hitting this condition is about 1/1000. For a mean of 1e17, standard  // calculators claim that this event won't happen.  if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {    // Assume huge values are bias neutral, retain bias for next call.    return std::numeric_limits<int64_t>::max() / 2;  }  double value = std::rint(interval);  bias_ = interval - value;  return value;}int64_t ExponentialBiased::GetStride(int64_t mean) {  return GetSkipCount(mean - 1) + 1;}void ExponentialBiased::Initialize() {  // We don't get well distributed numbers from `this` so we call NextRandom() a  // bunch to mush the bits around. We use a global_rand to handle the case  // where the same thread (by memory address) gets created and destroyed  // repeatedly.  ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);  uint64_t r = reinterpret_cast<uint64_t>(this) +               global_rand.fetch_add(1, std::memory_order_relaxed);  for (int i = 0; i < 20; ++i) {    r = NextRandom(r);  }  rng_ = r;  initialized_ = true;}}  // namespace profiling_internalABSL_NAMESPACE_END}  // namespace absl
 |