dbformat.h 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style license that can be
  3. // found in the LICENSE file. See the AUTHORS file for names of contributors.
  4. #ifndef STORAGE_LEVELDB_DB_DBFORMAT_H_
  5. #define STORAGE_LEVELDB_DB_DBFORMAT_H_
  6. #include <stdio.h>
  7. #include "leveldb/comparator.h"
  8. #include "leveldb/db.h"
  9. #include "leveldb/filter_policy.h"
  10. #include "leveldb/slice.h"
  11. #include "leveldb/table_builder.h"
  12. #include "util/coding.h"
  13. #include "util/logging.h"
  14. namespace leveldb {
  15. // Grouping of constants. We may want to make some of these
  16. // parameters set via options.
  17. namespace config {
  18. static const int kNumLevels = 7;
  19. // Level-0 compaction is started when we hit this many files.
  20. static const int kL0_CompactionTrigger = 4;
  21. // Soft limit on number of level-0 files. We slow down writes at this point.
  22. static const int kL0_SlowdownWritesTrigger = 8;
  23. // Maximum number of level-0 files. We stop writes at this point.
  24. static const int kL0_StopWritesTrigger = 12;
  25. // Maximum level to which a new compacted memtable is pushed if it
  26. // does not create overlap. We try to push to level 2 to avoid the
  27. // relatively expensive level 0=>1 compactions and to avoid some
  28. // expensive manifest file operations. We do not push all the way to
  29. // the largest level since that can generate a lot of wasted disk
  30. // space if the same key space is being repeatedly overwritten.
  31. static const int kMaxMemCompactLevel = 2;
  32. // Approximate gap in bytes between samples of data read during iteration.
  33. static const int kReadBytesPeriod = 1048576;
  34. } // namespace config
  35. class InternalKey;
  36. // Value types encoded as the last component of internal keys.
  37. // DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
  38. // data structures.
  39. enum ValueType { kTypeDeletion = 0x0, kTypeValue = 0x1 };
  40. // kValueTypeForSeek defines the ValueType that should be passed when
  41. // constructing a ParsedInternalKey object for seeking to a particular
  42. // sequence number (since we sort sequence numbers in decreasing order
  43. // and the value type is embedded as the low 8 bits in the sequence
  44. // number in internal keys, we need to use the highest-numbered
  45. // ValueType, not the lowest).
  46. static const ValueType kValueTypeForSeek = kTypeValue;
  47. typedef uint64_t SequenceNumber;
  48. // We leave eight bits empty at the bottom so a type and sequence#
  49. // can be packed together into 64-bits.
  50. static const SequenceNumber kMaxSequenceNumber = ((0x1ull << 56) - 1);
  51. struct ParsedInternalKey {
  52. Slice user_key;
  53. SequenceNumber sequence;
  54. ValueType type;
  55. ParsedInternalKey() {} // Intentionally left uninitialized (for speed)
  56. ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
  57. : user_key(u), sequence(seq), type(t) {}
  58. std::string DebugString() const;
  59. };
  60. // Return the length of the encoding of "key".
  61. inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
  62. return key.user_key.size() + 8;
  63. }
  64. // Append the serialization of "key" to *result.
  65. void AppendInternalKey(std::string* result, const ParsedInternalKey& key);
  66. // Attempt to parse an internal key from "internal_key". On success,
  67. // stores the parsed data in "*result", and returns true.
  68. //
  69. // On error, returns false, leaves "*result" in an undefined state.
  70. bool ParseInternalKey(const Slice& internal_key, ParsedInternalKey* result);
  71. // Returns the user key portion of an internal key.
  72. inline Slice ExtractUserKey(const Slice& internal_key) {
  73. assert(internal_key.size() >= 8);
  74. return Slice(internal_key.data(), internal_key.size() - 8);
  75. }
  76. // A comparator for internal keys that uses a specified comparator for
  77. // the user key portion and breaks ties by decreasing sequence number.
  78. class InternalKeyComparator : public Comparator {
  79. private:
  80. const Comparator* user_comparator_;
  81. public:
  82. explicit InternalKeyComparator(const Comparator* c) : user_comparator_(c) {}
  83. virtual const char* Name() const;
  84. virtual int Compare(const Slice& a, const Slice& b) const;
  85. virtual void FindShortestSeparator(std::string* start,
  86. const Slice& limit) const;
  87. virtual void FindShortSuccessor(std::string* key) const;
  88. const Comparator* user_comparator() const { return user_comparator_; }
  89. int Compare(const InternalKey& a, const InternalKey& b) const;
  90. };
  91. // Filter policy wrapper that converts from internal keys to user keys
  92. class InternalFilterPolicy : public FilterPolicy {
  93. private:
  94. const FilterPolicy* const user_policy_;
  95. public:
  96. explicit InternalFilterPolicy(const FilterPolicy* p) : user_policy_(p) {}
  97. virtual const char* Name() const;
  98. virtual void CreateFilter(const Slice* keys, int n, std::string* dst) const;
  99. virtual bool KeyMayMatch(const Slice& key, const Slice& filter) const;
  100. };
  101. // Modules in this directory should keep internal keys wrapped inside
  102. // the following class instead of plain strings so that we do not
  103. // incorrectly use string comparisons instead of an InternalKeyComparator.
  104. class InternalKey {
  105. private:
  106. std::string rep_;
  107. public:
  108. InternalKey() {} // Leave rep_ as empty to indicate it is invalid
  109. InternalKey(const Slice& user_key, SequenceNumber s, ValueType t) {
  110. AppendInternalKey(&rep_, ParsedInternalKey(user_key, s, t));
  111. }
  112. void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
  113. Slice Encode() const {
  114. assert(!rep_.empty());
  115. return rep_;
  116. }
  117. Slice user_key() const { return ExtractUserKey(rep_); }
  118. void SetFrom(const ParsedInternalKey& p) {
  119. rep_.clear();
  120. AppendInternalKey(&rep_, p);
  121. }
  122. void Clear() { rep_.clear(); }
  123. std::string DebugString() const;
  124. };
  125. inline int InternalKeyComparator::Compare(const InternalKey& a,
  126. const InternalKey& b) const {
  127. return Compare(a.Encode(), b.Encode());
  128. }
  129. inline bool ParseInternalKey(const Slice& internal_key,
  130. ParsedInternalKey* result) {
  131. const size_t n = internal_key.size();
  132. if (n < 8) return false;
  133. uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
  134. unsigned char c = num & 0xff;
  135. result->sequence = num >> 8;
  136. result->type = static_cast<ValueType>(c);
  137. result->user_key = Slice(internal_key.data(), n - 8);
  138. return (c <= static_cast<unsigned char>(kTypeValue));
  139. }
  140. // A helper class useful for DBImpl::Get()
  141. class LookupKey {
  142. public:
  143. // Initialize *this for looking up user_key at a snapshot with
  144. // the specified sequence number.
  145. LookupKey(const Slice& user_key, SequenceNumber sequence);
  146. LookupKey(const LookupKey&) = delete;
  147. LookupKey& operator=(const LookupKey&) = delete;
  148. ~LookupKey();
  149. // Return a key suitable for lookup in a MemTable.
  150. Slice memtable_key() const { return Slice(start_, end_ - start_); }
  151. // Return an internal key (suitable for passing to an internal iterator)
  152. Slice internal_key() const { return Slice(kstart_, end_ - kstart_); }
  153. // Return the user key
  154. Slice user_key() const { return Slice(kstart_, end_ - kstart_ - 8); }
  155. private:
  156. // We construct a char array of the form:
  157. // klength varint32 <-- start_
  158. // userkey char[klength] <-- kstart_
  159. // tag uint64
  160. // <-- end_
  161. // The array is a suitable MemTable key.
  162. // The suffix starting with "userkey" can be used as an InternalKey.
  163. const char* start_;
  164. const char* kstart_;
  165. const char* end_;
  166. char space_[200]; // Avoid allocation for short keys
  167. };
  168. inline LookupKey::~LookupKey() {
  169. if (start_ != space_) delete[] start_;
  170. }
  171. } // namespace leveldb
  172. #endif // STORAGE_LEVELDB_DB_DBFORMAT_H_